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Introduction and Motivations

I Appearance of singularities is one of the most important
phenomena in General Relativity and its generalizations
and modifications.

I The singularities were first discovered in such simple
geometries as those of Friedmann and Schwarzschild and
later their general character was established (Penrose,
Hawking).

I The investigation of the oscillatory approach to the
cosmological singularity (Belinsky, Khalatnikov, Lifshitz)
known also as Mixmaster universe (Misner) has opened
the way to the birth of a new branch of the mathematical
physics chaotic cosmology and hyperbolic Kac-Moody
algebras (Damour, Henneaux, Nicolai).



Introduction and Motivations

I Should we try to avoid the singularities and to construct
the models without them ?

I There are attempts to construct the histories of the
universe without singularities (e.g. Rubakov).

I One can construct also regular black holes (e.g. Simpson,
Visser).

I However, one can try to cross a singularity!

I Sometimes one can suggest and justify a prescription to
match the geometry and matter field configurations in the
regions separated by a singularity. This can be called
singularity crossing.



Introduction and Motivations

I In the case of soft or sudden singularities, the curvature is
divergent but the Christoffel symbols are finite. The
geodesics are well defined and the geometry can be
reconstructed.

I The crossing of the Big Bang - Big Crunch singularities
looks more counterintuitive.

I However, it can be sometimes described by using the
reparametrization of fields, including the metric.

I One can say that to do this, it is necessary to resort to
one of two ideas, or a combination thereof.

I One of these ideas is to employ a reparameterization of
the field variables which makes the singular geometrical
invariant non-singular.



Introduction and Motivations

I Another idea is to find such a parameterization of the
fields, including, naturally, the metric, that gives enough
information to describe consistently the crossing of the
singularity even if some of the curvature invariants
diverge.

I The application of these ideas looks in a way as an
craftsman work.

I Our goal is to develop a general formalism to distinguish
“dangerous” and “non-dangerous” singularities,
considering the field variable space of the model under
consideration.



Spacetime singularities

I There exist the singularities in the metric connected with
the unhappy choice of the coordinates.

I Such singularities are called “coordinate singularities”.

I Some of them are trivial like the singularity in the origin of
the spherical coordinate system of the flat space r = 0. It
is removed by the transition to the Cartesian coordinates.

I The coordinate singularity at the horizon in the
Schwarzschild metric is much more involved:

ds2 =

(
1− 2M

r

)
dt2−

(
1− 2M

r

)−1

dr 2−r 2(dθ2+sin2 θdφ2).

One can eliminate it by the transition to the Kruskal
coordinates, but the horizon is physically significant.
One can cross it only in one direction.



I Mathematically, there exists no parameter which smoothly
connects the above change of coordinates to the identity.
Such changes of coordinates are called “large”.

I In the center r = 0 one has the singularity of the
Kretschmann invariant

RijmnR
ijmn,

which cannot be eliminated by the coordinate change.

I In the Friedmann universe

ds2 = dt2 − a2(t)dl2

the Ricci scalar R diverges at t = 0.

I What can we do with these singularities?



Examples of spacetime singularities removable by field
redefinitions

Hawking -Turok instanton

ds2 = dσ2 + b2(σ)
[
dχ2 + sin2(χ) dΩ2

]
,

b(σ) ≈

{
σ , for σ ∼ 0 ,

(σf − σ)1/3 , for σ ∼ σf ,

φ(σ) ≈

{
1
2
σ2 , for σ ∼ 0 ,

−
√

2
3

ln(σf − σ), for σ ∼ σf .

On Wick rotating χ, one obtains an open universe.



The Ricci scalar is

R ∼ 1

(σf − σ)2
,

there is a spacetime singularity at σ = σf .
Changing spacetime coordinates to d σ̄ = b−1 dσ, followed by
a Weyl transformation ḡµν = b−2 gµν gives us a non-singular
geometry.
Let us make another Weyl transformation

ḡµν = Ω2 g̃µν ,

Ω = 1 + β e−α
√

2/3φ,

where α and β are free parameters.



Introducing a new, canonically normalized scalar field

d φ̃2 = 6 e−
√

2/3φ Ω2 ∂ ln Ω

∂φ

(√
2

3
− ∂ ln Ω

∂φ

)
dφ2,

we come to the situation when both the geometry and the
scalar field are regular.



Flat Friedmann universe with a scalar field

ds2 = dt2 − a2(t)dl2.

In such a universe there is a Big Bang - Big Crunch singularity.
One can prescribe the rules for its crossing making conformal
transformations between the Einstein and Jordan frames,
combined with the transformation of the scalar field, which
leaves it canonically normalized.

U0R ↔ U(φ)R .



Field space and singularities

I When the spacetime singularities can be removed by a
reparametrization of the field variables?

I Our hypothesis: when the geometry of the space of the
field variables is non-singular.

I The field space S was developed in order to treat on the
same (geometrical) footing both changes of coordinates
in the spacetime M and field redefinitions in the
functional approach to quantum field theory.

I This approach requires introducing a local metric G in
field space S and computing the associated geometric
scalars by defining a covariant derivative which is
compatible with G .

I G is actually determined by the kinetic part of the action
and its dimension depends on the field content of the
latter.



Geometry of field space for pure gravity

For pure gravity theories there is a unique one-parameter
family of field-space metrics

Gab = GAB δ(x , x ′) ,

where

GAB =
1

2
(gµρ gσν + gµσ gρν + c gµν gρσ)

called DeWitt super-metric. It involves a dimensionless
parameter c .



Following Vilkovisky and DeWitt, we introduce also the
Christoffel symbols, covariant derivatives and curvature tensor
in the field space.
For the DeWitt functional metric, the Ricci scalar is

R =
n

4
− n2

8
− n3

8
,

where n is the dimensionality of the spaceime.
We shall define the functional Kretschmann scalar of the
underlying field space S as

K = RABCD RABCD .

Rather cumbersome calculations give

K =
n

8

(
n3

4
+

3n2

4
− 1

)
.



This shows that K is smooth for any spacetime metric g in
any spacetime dimension n.
Besides, K does not depend on the DeWitt parameter c .
Therefore, every theory of pure gravity is free of curvature
singularities in the field space G.



Quantum effective action and topological classification of
functional singularities

At some field configurations the quantum effective action and
the corresponding path integral can become ill-defined.
These configurations can correspond to the appearance of the
gravitational singularities.
It is somewhat surprising that both the functional
Kretschmann scalar and the path-integral measure remain
regular in four spacetime dimensions for the DeWitt metric.
This suggests that n = 4 stands at a special place from the
perspective of the geometry of field space.



Let us introduce the functional

ψ[ϕ] = e i Γ[ϕ].

We shall call ψ[ϕ] the functional order parameter because ψ
plays the analogous role of an order parameter in the theory of
phase transitions in ordered media or cosmology.
The field space M can be thought of as the ordered medium
itself, whereas functional singularities correspond to
topological defects.
The functional order parameter ψ defines the map

ψ :M→ S1,

from the field space to the unit circle, the latter playing the
role of the order parameter space.



The singularities can be characterized by the fundamental
group (first homotopy group).
Since π1(S1) = Z, the homotopy classes are labeled by the
winding number W .
A functional singularity exists whenever W 6= 0.

We have considered a flat Friedmann universe filled with a
massless scalar field.
There is the singularity of the Big Bang - Big Crunch type.
This singularity can be eliminated by a field reparametrization.
Direct (while tricky) calculation shows that in this case the
winding number is equal to zero.



Conclusions

I We have proposed to investigate singularities in the field
space rather than in spacetime.

I Existing examples show that certain singularities in
spacetime can be removed by field redefinitions albeit
being non-removable under change of coordinates.

I Finding field redefinitions that can eliminate singularities
is not always feasible in practice.

I The promising approach is to calculate curvature
invariants in field space.

I We showed that the Kretschmann scalar of the DeWitt
functional metric turns out to be free of singularities.

I The fact that a singularity is removable in field space
does not imply that there is no interesting physics
occurring around it.



I We have introduced a topological classification of the
functional singularities based on the notion of the
effective action of the theory.

I We have given an example that the topological triviality
confirms the fact that in a particular model with a
spacetime (curvature) singularity, one can describe the
passage through this singularity, using a field
reparametrization.


