

Towards realistic constraints on alternative theories of gravity

Emilio Bellini

9th September 2022
Workshop on Tensions in Cosmology

Which framework shall I use? The two ways . . .

Covariant theory approach

$S=\int \mathrm{d}^{4} \times \sqrt{-g}\left[\sum_{i=2}^{5} \frac{1}{8 \pi G_{N}} \mathcal{L}_{i}\left(g_{\mu \nu}, \phi\right)+\mathcal{L}_{\mathrm{m}}\left(g_{\mu \nu}, \psi_{M}\right)\right]$
[Horndeski (1974)]
[Gubitosi, et al. (2013)]
[EB, Sawicki (2014)]

$$
\begin{aligned}
& \mathcal{L}_{2}=G_{2}(\phi, X) \\
& \mathcal{L}_{3}=-G_{3}(\phi, X) \square \phi \\
& \mathcal{L}_{4}=G_{4}(\phi, X) R+G_{4 X}(\phi, X)\left[(\square \phi)^{2}-\phi_{; \mu \nu} \phi^{; \mu \nu}\right] \\
& \mathcal{L}_{5}=G_{5}(\phi, X) G_{\mu \nu} \phi^{; \mu \nu}-\frac{1}{6} G_{5 X}(\phi, X)\left[(\square \phi)^{3}+2 \phi_{; \mu}{ }^{\nu} \phi_{; \nu}{ }^{\alpha} \phi_{; \alpha}{ }^{\mu}-3 \phi_{; \mu \nu} \phi^{; \mu \nu} \square \phi\right]
\end{aligned}
$$

Which framework shall I use? The two ways . . .

Covariant theory approach

$S=\int \mathrm{d}^{4} \times \sqrt{-g}\left[\sum_{i=2}^{5} \frac{1}{8 \pi G_{\mathrm{N}}} \mathcal{L}_{i}\left(g_{\mu \nu}, \phi\right)+\mathcal{L}_{\mathrm{m}}\left(g_{\mu \nu}, \psi_{\mathrm{M}}\right)\right]$
[Horndeski (1974)]
[Gubitosi, et al. (2013)]
[EB, Sawicki (2014)]

$$
\begin{aligned}
& \mathcal{L}_{2}=G_{2}(\phi, X) \\
& \mathcal{L}_{3}=-G_{3}(\phi, X) \square \phi \\
& \mathcal{L}_{4}=G_{4}(\phi, X) R+G_{4 X}(\phi, X)\left[(\square \phi)^{2}-\phi_{; \mu \nu} \phi^{; \mu \nu}\right] \\
& \mathcal{L}_{5}=G_{5}(\phi, X) G_{\mu \nu} \phi^{; \mu \nu}-\frac{1}{6} G_{5 X}(\phi, X)\left[(\square \phi)^{3}+2 \phi_{; \mu}{ }^{\nu} \phi_{; \nu}{ }^{\alpha} \phi_{; \alpha}{ }^{\mu}-3 \phi_{; \mu \nu} \phi^{; \mu \nu} \square \phi\right]
\end{aligned}
$$

Effective theory approach
Covariant Theory Effective Description (linear) Predictions

Effective theory approach

Which framework shall I use? The two ways . . .

$$
\begin{array}{ccccccc}
G_{2}(\phi, X) & G_{3}(\phi, X) & G_{4}(\phi, X) & G_{5}(\phi, X) & F_{4}(\phi, X) & F_{5}(\phi, X) \\
\phi_{i} & \dot{\phi}_{i} & H_{0} & \Omega_{\mathrm{m} 0} & &
\end{array}
$$

$$
\alpha_{\mathrm{K}}(t) \quad \alpha_{\mathrm{B}}(t) \quad \alpha_{\mathrm{M}}(t) \quad \alpha_{\mathrm{T}}(t) \quad \alpha_{\mathrm{H}}(t) \quad H(t) \quad \Omega_{\mathrm{m} 0}
$$

Which framework shall I use? The two ways . . .

$$
\begin{array}{ccccccc}
G_{2}(\phi, X) & G_{3}(\phi, X) & G_{4}(\phi, X) & G_{5}(\phi, X) & F_{4}(\phi, X) & F_{5}(\phi, X) \\
\phi_{i} & \dot{\phi}_{i} & H_{0} & \Omega_{\mathrm{m} 0} & &
\end{array}
$$

- arbitrary metric and background

$$
\alpha_{\mathrm{K}}(t) \quad \alpha_{\mathrm{B}}(t) \quad \alpha_{\mathrm{M}}(t) \quad \alpha_{\mathrm{T}}(t) \quad \alpha_{\mathrm{H}}(t) \quad H(t) \quad \Omega_{\mathrm{m} 0}
$$

- finite order in perturbations theory on FRW (this is linear)

Which framework shall I use? The two ways . . .

$$
\begin{array}{ccccccc}
G_{2}(\phi, X) & G_{3}(\phi, X) & G_{4}(\phi, X) & G_{5}(\phi, X) & F_{4}(\phi, X) & F_{5}(\phi, X) \\
& \phi_{i} & \dot{\phi}_{i} & H_{0} & \Omega_{\mathrm{m} 0} & &
\end{array}
$$

- arbitrary metric and background
- need some understanding to choose a model

$$
\alpha_{\mathrm{K}}(t) \quad \alpha_{\mathrm{B}}(t) \quad \alpha_{\mathrm{M}}(t) \quad \alpha_{\mathrm{T}}(t) \quad \alpha_{\mathrm{H}}(t) \quad H(t) \quad \Omega_{\mathrm{m} 0}
$$

- finite order in perturbations theory on FRW (this is linear)
- easy to model

Which framework shall I use? The two ways . . .

$$
\begin{array}{ccccccc}
G_{2}(\phi, X) & G_{3}(\phi, X) & G_{4}(\phi, X) & G_{5}(\phi, X) & F_{4}(\phi, X) & F_{5}(\phi, X) \\
& \phi_{i} & \dot{\phi}_{i} & H_{0} & \Omega_{\mathrm{m} 0} & &
\end{array}
$$

- arbitrary metric and background
- need some understanding to choose a model
- fully consistent and non-trivial dynamics of the background

$$
\alpha_{\mathrm{K}}(t) \quad \alpha_{\mathrm{B}}(t) \quad \alpha_{\mathrm{M}}(t) \quad \alpha_{\mathrm{T}}(t) \quad \alpha_{\mathrm{H}}(t) \quad H(t) \quad \Omega_{\mathrm{m} 0}
$$

- finite order in perturbations theory on FRW (this is linear)
- easy to model
- decouple background from perturbations, map to ST not clear

Which framework shall I use? The two ways ...

$$
\begin{array}{ccccccc}
G_{2}(\phi, X) & G_{3}(\phi, X) & G_{4}(\phi, X) & G_{5}(\phi, X) & F_{4}(\phi, X) & F_{5}(\phi, X) \\
\phi_{i} & \dot{\phi}_{i} & H_{0} & \Omega_{\mathrm{m} 0} & &
\end{array}
$$

- arbitrary metric and background
- need some understanding to choose a model
- fully consistent and non-trivial dynamics of the background
- each theory has to be solved from the beginning (probability of numerical noise)

$$
\alpha_{\mathrm{K}}(t) \quad \alpha_{\mathrm{B}}(t) \quad \alpha_{\mathrm{M}}(t) \quad \alpha_{\mathrm{T}}(t) \quad \alpha_{\mathrm{H}}(t) \quad H(t) \quad \Omega_{\mathrm{m} 0}
$$

- finite order in perturbations theory on FRW (this is linear)
- easy to model
- decouple background from perturbations, map to ST not clear
- easy to jump from one theory to the other

The linear universe

Guiding principles

[Zumalacàrregui, EB, et al. (2017)] [EB, Sawicki,Zumalacàrregui (2020)]

- level of detail and control available to standard cosmology
- better a (controlled) error than a wrong solution

www.hiclass-code.net

The non-linear universe

Hassani, et al. (2019)

The status

- N-body simulations for specific models, e.g. nDGP, $f(R)$, cubic Galileons, IDE
- fast methods more general, but many parameters
- we need emulators

The non-linear universe

Hassani, et al. (2019)

The status

- N-body simulations for specific models, e.g. nDGP, $f(R)$, cubic Galileons, IDE
- fast methods more general, but many parameters
- we need emulators

The dream

A unified framework to compress the number of non-linear parameters and describe broad classes of models.

Summary

- choose carefully how you want to describe gravity
- linear order with hi_class we are ready
- non-linearities: still a lot to do, but there are efforts (it's tough)

Thank you!

