Tilted cosmology and tensions with the Λ CDM model using SNla

Kerkyra Asvesta

Department of Physics
Section of Astrophysics, Astronomy and Mechanics
Aristotle University of Thessaloniki

Tensions in Cosmology 7-12 September, Corfu

Motivation for the tilted model

- Several alternative cosmological models have been proposed to explain observations, but most of them assume some forms of dark energy or abandon FRLW
- Large-scale peculiar motions are not wisely taken into account
- No robust analysis of the peculiar-velocity effects

The tilted cosmological scenario can in principle explain the late-time cosmic acceleration without the need of dark energy/modified gravity or new physics

The Tilted Cosmological Model

Employ General Relativity
observers with 4-velocity $u_{a} \rightarrow$ idealised observers following the smooth Hubble expansion
observers with 4-velocity $\tilde{v}_{a} \rightarrow$ real observers in galaxies like ours, moving relative to the Hubble frame

The tilted cosmological model - Kinematics (1/2)

In a perturbed FRW universe, using linear cosmological perturbation theory:

- The three velocities are related through the reduced Lorentz boost :

$$
\begin{equation*}
\tilde{u}_{a} \approx u_{a}+\tilde{v_{a}} \tag{1}
\end{equation*}
$$

for non-relativistic peculiar velocities ($\tilde{v}^{2}=\tilde{v}^{a} \tilde{v}_{a} \ll 1$)

- The expansion rates between the two frames are:

$$
\begin{equation*}
\tilde{\Theta}=\Theta+\tilde{\vartheta} \quad \text { and } \quad \tilde{\Theta}^{\prime}=\dot{\Theta}+\tilde{\vartheta}^{\prime} \tag{2}
\end{equation*}
$$

with $\Theta=3 H, \tilde{\vartheta}=\tilde{D}^{a} \tilde{v}_{a}$ and $\tilde{\vartheta} / \Theta \ll 1$ (in the linear regime).
$\tilde{\Theta} \neq \Theta$ and $\tilde{\Theta}^{\prime} \neq \dot{\Theta} \quad$ because of peculiar motion effects only

The tilted cosmological model - Kinematics (2/2)

In a perturbed Einstein-de Sitter universe ($p=0$ and $\Omega=1$) the deceleration parameter measured by the real observers is:

$$
\begin{equation*}
\tilde{q}=q+\frac{1}{9}\left(\frac{\lambda_{H}}{\lambda}\right)^{2} \frac{\tilde{\vartheta}}{H} \quad \text { with } \lambda_{H}=1 / H \text { and }|\tilde{\vartheta}| / H \ll 1 \tag{3}
\end{equation*}
$$

- When $\lambda \gtrsim \lambda_{H}, \quad \tilde{q} \rightarrow q$ and the peculiar motions fade away
- On subhorizon scales $\left(\lambda \ll \lambda_{H}\right), \quad \tilde{q} \neq q$ and the difference can be large depending on the bulk flow scale
- The difference depends on the sign of $\tilde{\vartheta}$. For contracting bulk-flows $(\tilde{\vartheta}<0), \quad \tilde{q}<0 \longrightarrow$ local apparent accelerated expansion for the real observers

Parametrization of $\tilde{\vartheta}$

- We assume that locally the bulk flow contracts $(\tilde{\vartheta}<0)$ and $q=\frac{1}{2}$
- We consider a physically motivated form of the local volume scalar $\tilde{\vartheta}$ in the tilted frame ${ }^{1}$

- The deceleration parameter in the tilted frame now becomes

$$
\begin{equation*}
\tilde{q}=\tilde{q}(\lambda)=\frac{1}{2}\left(1-\frac{m}{p+r \lambda^{3}}\right) \tag{5}
\end{equation*}
$$

${ }^{1}$ K. Asvesta, L. Kazantzidis, L. Perivolaropoulos, C. Tsagas, 2022, DOI: $10.1093 / \mathrm{mnras} /$ stac922

The Pantheon compilation

JLA + additional Snla from PanStarrs and HST (Scolnic et al. (2018) arXiv:1710.00845)

1048 Snla out to redshift $z \sim 2.3$

\checkmark Construct the theoretical apparent magnitude ($m_{t h}$) for the tilted model
Eq. 5 can take the form

$$
\begin{equation*}
\tilde{q}(z)=\frac{1}{2}\left(1-\frac{1}{\alpha+b d_{r}^{3}(z)}\right) \quad \text { with } \quad d_{r}(z)=H_{0} \bar{\chi}(z) / c \tag{6}
\end{equation*}
$$

- The Hubble rate at any redshift connects with the deceleration parameter through

$$
\begin{equation*}
\tilde{H}(z)=H_{0} \exp \left[\int_{0}^{z}\left(\frac{1+\tilde{q}(u)}{1+u}\right) d u\right] \tag{7}
\end{equation*}
$$

- The Hubble free luminosity distance of the SNIa :

$$
\begin{equation*}
\tilde{D}_{L}(z)=H_{0}(1+z) \int_{0}^{z} \frac{d z^{\prime}}{\tilde{H}\left(z^{\prime}\right)} \tag{8}
\end{equation*}
$$

- The theoretically predicted apparent magnitude :
$m_{t h}(z)=5 \log _{10} \tilde{D}_{L}(z)+M+5 \log _{10}\left(\frac{c / H_{0}}{1 M p c}\right)+25=\mathcal{M}+5 \log _{10} \tilde{D}_{L}(z)$

Results

$$
\begin{equation*}
\chi_{\min }^{2}(\mathcal{M}, \alpha, b)=\left(m_{o b s, i}(z)-m_{t h}(z)\right) C_{i j}^{-1}\left(m_{o b s, j}(z)-m_{t h}(z)\right) \tag{10}
\end{equation*}
$$

- $C_{i j}$ is the total covariance matrix of the SNIa (sys+stat)
- We calculate χ^{2} for the case of an Einstein-de Sitter bulk flow model

Model	\mathcal{M}	α	b	$\Omega_{0 m}$	$\chi_{\min }^{2}$	$\chi_{\text {red }}^{2}$
$\mathbf{\Lambda C D M}$	$\mathbf{2 3 . 8 0 9} \pm \mathbf{0 . 0 1 1}$	-	-	$\mathbf{0 . 2 9 9} \pm \mathbf{0 . 0 2 2}$	$\mathbf{1 0 2 6 . 6 7}$	$\mathbf{0 . 9 8 1}$
$\mathbf{T - E d S}$	$\mathbf{2 3 . 8 1 3 _ { - 0 . 0 1 4 } ^ { + 0 . 0 1 5 }}$	$\mathbf{0 . 5 1 2} \pm \mathbf{0 . 0 4 1}$	$\mathbf{6 . 7 _ { - 3 . 8 } ^ { + 5 . 6 }}$	$\mathbf{1 . 0}$	$\mathbf{1 0 2 6 . 7 6}$	$\mathbf{0 . 9 8 2}$

K. Asvesta, L. Kazantzidis, L. Perivolaropoulos, C. Tsagas, 2022, DOI: $10.1093 / \mathrm{mnras} /$ stac922

Result The tilted cosmological model performs equally well with Λ CDM $\left(\chi_{r e d}^{2} \approx 1\right)$

Evolutionary behaviour of \tilde{q} and confidence levels

K. Asvesta, L. Kazantzidis, L. Perivolaropoulos, C. Tsagas, 2022, DOI: $10.1093 / \mathrm{mnras} /$ stac922

3 Things to take away from this talk

- The obtained profile of \tilde{q} is very close to the one of Λ CDM
- The transition redshift from deceleration to acceleration, in the tilted model using SNIa, is close to the one from the Λ CDM model
- Fit the SNla data to the tilted model and found an apparent late-time cosmic acceleration without the need of dark energy/MG

What comes next?

- One prediction of the model is the presence of a dipole in the distribution of deceleration measured in the tilted frame
- Allow for a directional dependence in the spatial distribution of $\tilde{\vartheta}$ and consequently on the tilted deceleration parameter $(\tilde{q}) \rightarrow$ test for dipolar modulation on \tilde{q}
- Test our results with the recently published SNla data, Pantheon+ and future SNla surveys (LSST) or galaxy clusters
- Test our results with other cosmological probes that extend in greater redshifts such as quasars

