Early Dark Energy meets massive Neutrinos arXiv:2207.01501 ¹

Alexander Reeves

 \subseteq areeves@phys.ethz.ch

Tensions in Cosmology Corfu 09 September 2022

¹A.R, L.Herold (MPA Garching), S.Vagnozzi (Cambridge), B.Sherwin (Cambridge), E.Ferreira (Tokyo)

The EDE model increases inferred H_0

$$heta_s = rac{r_s}{D(z_*)}$$
 well constrained by CMB $D(z_*) = \int_0^{z_*} dz rac{1}{H(z)}, \ r_s = \int_{z_*}^{\infty} dz rac{c_s(z)}{H(z)}$

- EDE: add scalar field to Λ*CDM*
- Field held up by Hubble friction in early Universe \rightarrow acts as DE and accelerates expansion prior to $z_* \rightarrow \text{reduced } r_5$
- Maintaining $\theta_s \to \text{increased } H_0$

ACDM fit to Planck+BAO+SN1A+SH0ES EDE fit to Planck+BAO+SN1A+SH0ES Smith et al., PRD 101 (2020) 6, 063523

Motivation: EDE meets LSS data

- Maintaining fit to CMB in EDE scenario requires ω_{cdm} ↑
- This leads to increased clustering amplitude → inconsistency with LSS data
- Previous works [Hill(2020), Ivanov(2020)] find no evidence for EDE resolving H₀ tension when LSS data included in analysis

EDE with massive neutrinos

Datasets

Planck (TTTEEE+lensing)

BOSS DR12 full-shape + reconstructed BAO'

https://github.com/Michalychforever/CLASS-PT Ivanov(2020)

Massive neutrinos and EDE I: Bayesian results

- Bayesian constraints show very little impact of freeing $M_{
 u}$ in the EDE model
- Caveat: recent evidence for prior volume effects impacting EDE constraints (see Laura Herold talk!)

A.R, L.Herold, S.Vagnozzi, B.Sherwin, E.Ferreira, arXiv:2207.01501 (submitted to MNRAS)

Massive neutrinos and EDE II: Frequentist results

Frequentist analysis: fix M_{ν} to 7 values in range 0.06 $< M_{\nu}/eV <$ 0.3 and find bestfit parameters and χ^2

- $M_{\nu} = 0.06 eV$ gives global best fit in frequentist setting: no preference for increased M_{ν}
- Why does BOSS not favour high M_{ν} in EDE scenario?
 - Raised M_{ν} leads to worse fit to geometrical scales in clustering data due to background expansion effect
 - Outweighs any 'benefit' of M_{ν} reducing clustering amplitude

Conclusions

In this work we explored an extended Early Dark Energy model with a free neutrino mass

- ullet These results show raising $M_{
 u}$ cannot effectively reduce excess clustering in the EDE model
- Geometrical information in BOSS likelihood gives strong constraints on M_{ν} : likely to be the case for any early-time extension to ΛCDM
- Further work: a) Consider other datasets e.g. ACT/WL b) explore other mechanisms to reduce clustering (decaying DM, DM-DR interactions etc.)

If you want to know more please read our paper: arXiv:2207.01501

EXTRA SLIDE1: EDE potential and physics

- Axion EDE field ϕ , $V_0 = m^2 f^2$
- Modified axion potential broken by 'non-perturbative instanton effects' to give this specific form
- Uncoupled DE model: effect on other fields via background effects
- $\phi'' + 2aH\phi' + m^2a^2\frac{dV}{d\phi} =$ 0: held up by Hubble friction in early Universe \rightarrow acts as DE

EXTRA SLIDE2: sensitivity to clustering amplitude

Credits: Ivanov et al., PRD 102 (2020) 10, 103502

EXTRA SLIDE3: EDE $+ M_{\nu}$ reason for hope?

 $M_{\nu} - f_{EDE}$ symbiotic?

EXTRA SLIDE 4: BACKGROUND IMPACT OF M_{ν}

- $\theta = r_s(drag)/D(z)$: characterises position of BAO feature in galaxy clustering data
- Background effects of M_{ν} lead to a worse fit to BAO position than in baseline EDE model
- BOSS(fs) + BAO likelihood more sensitive to geometry information than overall clustering amplitude

EXTRA SLIDE 6: $f \sigma 8$

EXTRA SLIDE 7: PVEs

