Contribution ID: 50 Type: not specified ## Early Dark Energy meets massive neutrinos Friday 9 September 2022 17:10 (10 minutes) Early dark energy (EDE) alleviates the H_0 tension at the cost of increasing the clustering amplitude and worsening the S_8 discrepancy. Motivated by massive neutrinos' ability to suppress structure, we study their impact on EDE combining Planck and BOSS full-shape clustering data. A Bayesian analysis returns no evidence for a non-zero neutrino mass sum M_{ν} (< 0.15, eV at 95%°C.L.), with limits driven primarily by shifts in the BAO scale. A frequentist profile likelihood analysis reveals a correlation between M_{ν} and the EDE fraction $f_{\rm EDE}$, which keeps H_0 fixed as M_{ν} increases. Compared to the best-fit baseline EDE model ($M_{\nu}=0.06$, eV), a model with $M_{\nu}=0.15$, eV maintains the same $H_0({\rm km/s/Mpc})$ =(70.08, 70.12, respectively) whilst decreasing S_8 =(0.837, 0.831 respectively), whilst still representing a better fit ($\Delta\chi^2=-3.1$) relative to Λ CDM. Our results indicate that an EDE+ M_{ν} model can keep the H_0 tension at the same level as baseline EDE while mitigating the enhanced clustering issue. Presenter: Mr REEVES, Alexander (ETHZ)