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How do we relate smoothed 
geometry to the real Universe?
1. Solve Einstein’s equations, with suitable matter content and 

boundary conditions.

 à la Krasinski

2. Determine the large-scale properties of space, on a suitably 
chosen foliation.

 à la Buchert

3. Average observables made within the inhomogeneous 
spacetime, and find the best-fitting FLRW geometry.

 à la Gasperini et al.
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Results

• Large-scale quantities that depend on the scale of the chosen 
domain.

• Time-dependent spatial curvature, in the emergent Friedmann
equations.

• Extra source terms appearing in the Friedmann equations, 
sourced by variances in local expansion rates and shear.

most current modelling suggests 
these effects are small
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geometries that belong to the Bianchi classification.

see e.g. Aluri et al, arXiv:2207.05765

see e.g. MacCallum, arXiv:2001.11387 
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Locally rotational symmetry

LRS solutions can be described by time-dependent

They are:

• Bianchi I, III or VII0

• Bianchi II, III, VII or IX

• Kantowski-Sachs

• Friedmann

if ma is surface 
forming

if ma is not surface 
forming

if Killing vectors aren’t 
simply transitive

the spatially homogeneous LRS solutions

if isotropic
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where, e.g.,
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• A set of equations that describe the large-scale properties of a 
space as LRS Bianchi.

• A set of back-reaction terms that can drive the evolution of 
expansion and anisotropy (i.e. shear and bulk flow).

• A set of relationships that relate average expansion and 
anisotropy in different foliations.

publication to appear!

these equations can be used to model 
emergent anisotropy in cosmology!



Thank you


