### Generalizing the Friedmann Model in Light of Cosmological Tensions

Timothy Clifton (Queen Mary, University of London)

in collaboration with Theo Anton

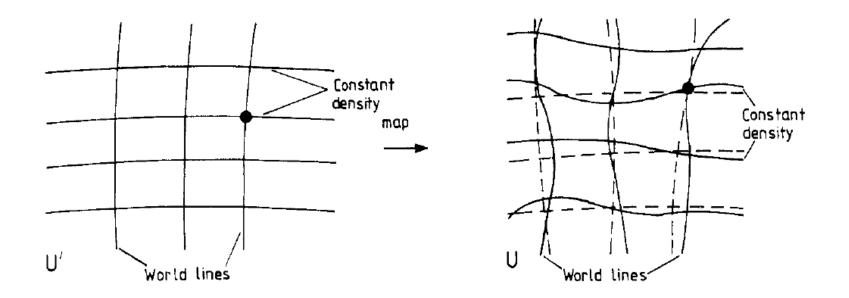
#### The 'Fitting Problem'

#### The 'Fitting Problem'

The 'fitting problem' is the practical issue we face when using an idealised Friedmann geometry to model the real Universe:

#### The 'Fitting Problem'

The 'fitting problem' is the practical issue we face when using an idealised Friedmann geometry to model the real Universe:



<sup>[</sup>Ellis & Stoeger CQG 4, 1697 (1987)]

1. Solve Einstein's equations, with suitable matter content and boundary conditions.

- 1. Solve Einstein's equations, with suitable matter content and boundary conditions.
  - à la Krasinski

- 1. Solve Einstein's equations, with suitable matter content and boundary conditions.
  - à la Krasinski
- 2. Determine the large-scale properties of space, on a suitably chosen foliation.

- 1. Solve Einstein's equations, with suitable matter content and boundary conditions.
  - à la Krasinski
- 2. Determine the large-scale properties of space, on a suitably chosen foliation.

≻ à la Buchert

- 1. Solve Einstein's equations, with suitable matter content and boundary conditions.
  - à la Krasinski
- 2. Determine the large-scale properties of space, on a suitably chosen foliation.

#### à la Buchert

3. Average observables made within the inhomogeneous spacetime, and find the best-fitting FLRW geometry.

- 1. Solve Einstein's equations, with suitable matter content and boundary conditions.
  - à la Krasinski
- 2. Determine the large-scale properties of space, on a suitably chosen foliation.

#### à la Buchert

3. Average observables made within the inhomogeneous spacetime, and find the best-fitting FLRW geometry.

➤ à la Gasperini et al.

• Define an 'average' scale factor:  $a_{\mathcal{D}}(a)$ 

$$(t) \equiv \left(\frac{\int_{\mathcal{D}} d^3 X \sqrt{{}^{(3)}g(t, X^i)}}{\int_{\mathcal{D}} d^3 X \sqrt{{}^{(3)}g(t_0, X^i)}}\right)^{\frac{1}{3}}$$

• Define an 'average' scale factor:  $a_{\mathcal{D}}(t) \equiv$ 

$$= \left(\frac{\int_{\mathcal{D}} d^3 X \sqrt{^{(3)}g(t,X^i)}}{\int_{\mathcal{D}} d^3 X \sqrt{^{(3)}g(t_0,X^i)}}\right)^{\frac{1}{3}}$$

•

- **Buchert's approach** Define an 'average' scale factor:  $a_{\mathcal{D}}(t) \equiv \left(\frac{\int_{\mathcal{D}} d^3 X \sqrt{^{(3)}g(t,X^i)}}{\int_{\mathcal{D}} d^3 X \sqrt{^{(3)}g(t_0,X^i)}}\right)^{\frac{1}{3}}$
- Average the Hamiltonian, Raychaudhuri & conservation eqns:

### **Buchert's approach** Define an 'average' scale factor: $a_{\mathcal{D}}(t) \equiv \left(\frac{\int_{\mathcal{D}} d^3 X \sqrt{(^3)g(t,X^i)}}{\int_{\mathcal{D}} d^3 X \sqrt{(^3)g(t_0,X^i)}}\right)^{\frac{1}{3}}$ Buchert's approach

- •
- Average the Hamiltonian, Raychaudhuri & conservation eqns:

$$3\frac{\dot{a}_{\mathcal{D}}^{2}}{a_{\mathcal{D}}^{2}} = 8\pi G_{\mathrm{N}}\langle\rho\rangle_{\mathcal{D}} - \frac{1}{2}\langle^{(3)}R\rangle_{\mathcal{D}} - \frac{1}{2}\mathcal{Q}_{\mathcal{D}}$$
$$3\frac{\ddot{a}_{\mathcal{D}}}{a_{\mathcal{D}}} = -4\pi G_{\mathrm{N}}\langle\rho\rangle_{\mathcal{D}} + \mathcal{Q}_{\mathcal{D}}$$
$$\partial_{t}\langle\rho\rangle_{\mathcal{D}} + 3\frac{\dot{a}_{\mathcal{D}}}{a_{\mathcal{D}}}\langle\rho\rangle_{\mathcal{D}} = 0$$

- •
- Buchert's approach Such an 'average' scale factor:  $a_{\mathcal{D}}(t) \equiv \left(\frac{\int_{\mathcal{D}} d^3 X \sqrt{^{(3)}g(t,X^i)}}{\int_{\mathcal{D}} d^3 X \sqrt{^{(3)}g(t_0,X^i)}}\right)^{\frac{1}{3}}$
- Average the Hamiltonian, Raychaudhuri & conservation eqns:

$$3\frac{\dot{a}_{\mathcal{D}}^{2}}{a_{\mathcal{D}}^{2}} = 8\pi G_{N}\langle\rho\rangle_{\mathcal{D}} - \frac{1}{2}\langle^{(3)}R\rangle_{\mathcal{D}} - \frac{1}{2}\mathcal{Q}_{\mathcal{D}}$$
  

$$3\frac{\ddot{a}_{\mathcal{D}}}{a_{\mathcal{D}}} = -4\pi G_{N}\langle\rho\rangle_{\mathcal{D}} + \mathcal{Q}_{\mathcal{D}}$$
  

$$\partial_{t}\langle\rho\rangle_{\mathcal{D}} + 3\frac{\dot{a}_{\mathcal{D}}}{a_{\mathcal{D}}}\langle\rho\rangle_{\mathcal{D}} = 0$$
  
these look like  
Friedmann's  
equations

- •
- **Buchert's approach** Define an 'average' scale factor:  $a_{\mathcal{D}}(t) \equiv \left(\frac{\int_{\mathcal{D}} d^3 X \sqrt{^{(3)}g(t,X^i)}}{\int_{\mathcal{D}} d^3 X \sqrt{^{(3)}g(t_0,X^i)}}\right)^{\frac{1}{3}}$
- Average the Hamiltonian, Raychaudhuri & conservation eqns:

$$3\frac{\dot{a}_{\mathcal{D}}^{2}}{a_{\mathcal{D}}^{2}} = 8\pi G_{\mathrm{N}}\langle\rho\rangle_{\mathcal{D}} - \frac{1}{2}\langle^{(3)}R\rangle_{\mathcal{D}} - \frac{1}{2}\mathcal{Q}_{\mathcal{D}}$$
  

$$3\frac{\ddot{a}_{\mathcal{D}}}{a_{\mathcal{D}}} = -4\pi G_{\mathrm{N}}\langle\rho\rangle_{\mathcal{D}} + \mathcal{Q}_{\mathcal{D}}$$
  

$$\partial_{t}\langle\rho\rangle_{\mathcal{D}} + 3\frac{\dot{a}_{\mathcal{D}}}{a_{\mathcal{D}}}\langle\rho\rangle_{\mathcal{D}} = 0$$
  
these look like  
Friedmann's  
equations

where: 
$$\langle \psi \rangle_{\mathcal{D}}(t) \equiv \frac{\int_{\mathcal{D}} d^3 X \sqrt{(3)} g(t, X^i)}{\int_{\mathcal{D}} d^3 X \sqrt{(3)} g(t, X^i)}$$
,  $\mathcal{Q}_{\mathcal{D}} \equiv \frac{2}{3} \left( \langle \Theta^2 \rangle_{\mathcal{D}} - \langle \Theta \rangle_{\mathcal{D}}^2 \right) - 2 \langle \sigma^2 \rangle_{\mathcal{D}}$ 

• Large-scale quantities that depend on the scale of the chosen domain.

- Large-scale quantities that depend on the scale of the chosen domain.
- Time-dependent spatial curvature, in the emergent Friedmann equations.

- Large-scale quantities that depend on the scale of the chosen domain.
- Time-dependent spatial curvature, in the emergent Friedmann equations.
- Extra source terms appearing in the Friedmann equations, sourced by variances in local expansion rates and shear.

- Large-scale quantities that depend on the scale of the chosen domain.
- Time-dependent spatial curvature, in the emergent Friedmann equations.
- Extra source terms appearing in the Friedmann equations, sourced by variances in local expansion rates and shear.

`most current modelling suggests these effects are small

When trying to interpret anisotropic observations, we need a different approach.

When trying to interpret anisotropic observations, we need a different approach.

see e.g. Alurí et al, arXív:2207.05765/

When trying to interpret anisotropic observations, we need a different approach.

see e.g. Alurí et al, arXív:2207.05765/

• The natural way to model such a situation is to use spacetime geometries that belong to the Bianchi classification.

When trying to interpret anisotropic observations, we need a different approach.

see e.g. Alurí et al, arXív:2207.05765/

• The natural way to model such a situation is to use spacetime geometries that belong to the Bianchi classification.

see e.g. MacCallum, arXív:2001.11387)

LRS solutions can be described by time-dependent

 $\{\Theta, \mathcal{A}, \Sigma, \phi, \xi, \mathcal{E}, \mathcal{H}, \mu, p, Q, \Pi\}$ 

LRS solutions can be described by time-dependent

 $\{\Theta, \mathcal{A}, \Sigma, \phi, \xi, \mathcal{E}, \mathcal{H}, \mu, p, Q, \Pi\}$ 

They are:

LRS solutions can be described by time-dependent

 $\{\Theta, \mathcal{A}, \Sigma, \phi, \xi, \mathcal{E}, \mathcal{H}, \mu, p, Q, \Pi\}$ 

They are:

• Bianchi I, III or VII<sub>0</sub>

LRS solutions can be described by time-dependent

 $\{\Theta, \mathcal{A}, \Sigma, \phi, \xi, \mathcal{E}, \mathcal{H}, \mu, p, Q, \Pi\}$ 

They are:

Bianchi I, III or VII<sub>0</sub> if m<sup>a</sup> is surface forming

LRS solutions can be described by time-dependent

 $\{\Theta, \mathcal{A}, \Sigma, \phi, \xi, \mathcal{E}, \mathcal{H}, \mu, p, Q, \Pi\}$ 

They are:

• Bianchi I, III or VII<sub>0</sub> 👉

– íf m<sup>a</sup> ís surface formíng

• Bianchi II, III, VII or IX

LRS solutions can be described by time-dependent

 $\{\Theta, \mathcal{A}, \Sigma, \phi, \xi, \mathcal{E}, \mathcal{H}, \mu, p, Q, \Pi\}$ 

They are:



Bianchi II, III, VII or IX 

 íf m<sup>a</sup> is not surface
 forming

LRS solutions can be described by time-dependent

 $\{\Theta, \mathcal{A}, \Sigma, \phi, \xi, \mathcal{E}, \mathcal{H}, \mu, p, Q, \Pi\}$ 

They are:



Bianchi II, III, VII or IX
 Kantowski-Sachs
 Kantowski-Sachs
 if m<sup>a</sup> is not surface forming

LRS solutions can be described by time-dependent

 $\{\Theta, \mathcal{A}, \Sigma, \phi, \xi, \mathcal{E}, \mathcal{H}, \mu, p, Q, \Pi\}$ 

They are:



Bianchi II, III, VII or IX

Kantowski-Sachs

 Kantowski-Sachs
 forming
 forming
 if Killing vectors aren't
 simply transitive

LRS solutions can be described by time-dependent

 $\{\Theta, \mathcal{A}, \Sigma, \phi, \xi, \mathcal{E}, \mathcal{H}, \mu, p, Q, \Pi\}$ 

They are:



- Bianchi II, III, VII or IX

LRS solutions can be described by time-dependent

 $\{\Theta, \mathcal{A}, \Sigma, \phi, \xi, \mathcal{E}, \mathcal{H}, \mu, p, Q, \Pi\}$ 

They are:

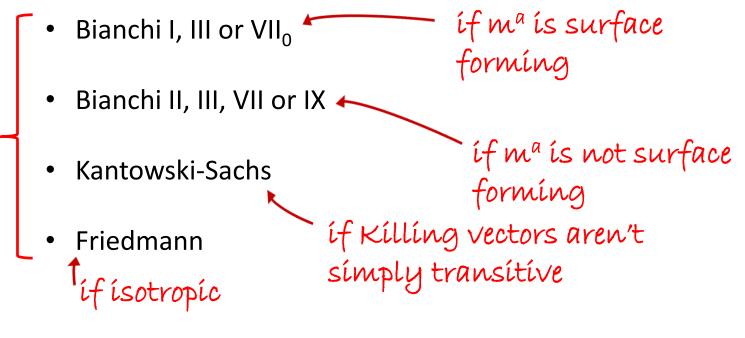


- Bianchi II, III, VII or IX
- Kantowski-Sachs if m<sup>a</sup> is not surface forming
- Friedmann
   if Killing vectors aren't simply transitive

LRS solutions can be described by time-dependent

 $\{\Theta, \mathcal{A}, \Sigma, \phi, \xi, \mathcal{E}, \mathcal{H}, \mu, p, Q, \Pi\}$ 

They are:



he spatially homogeneous LRS solutions

After averaging the inhomogeneous equations we get:

After averaging the inhomogeneous equations we get:

$$\frac{2}{9} \langle \Theta \rangle^2 - \frac{1}{2} \langle \phi \rangle^2 + \frac{1}{3} \langle \Theta \rangle \langle \Sigma \rangle - \langle \Sigma \rangle^2 - \frac{2}{3} (\langle \mu \rangle + \Lambda) - \frac{1}{2} \langle \Pi \rangle - \langle \mathcal{E} \rangle + 2 \langle \xi \rangle^2 = \mathcal{Q}_1$$
$$\langle \Theta \rangle^{\cdot} - \langle \mathcal{A} \rangle (\langle \mathcal{A} \rangle + \langle \phi \rangle) + \frac{1}{3} \langle \Theta \rangle^2 + \frac{3}{2} \langle \Sigma \rangle^2 + \frac{1}{2} (\langle \mu \rangle + 3 \langle p \rangle) - \Lambda = \mathcal{Q}_2$$

After averaging the inhomogeneous equations we get:

 $\frac{2}{9}\langle\Theta\rangle^{2} - \frac{1}{2}\langle\phi\rangle^{2} + \frac{1}{3}\langle\Theta\rangle\langle\Sigma\rangle - \langle\Sigma\rangle^{2} - \frac{2}{3}(\langle\mu\rangle + \Lambda) - \frac{1}{2}\langle\Pi\rangle - \langle\mathcal{E}\rangle + 2\langle\xi\rangle^{2} = \mathcal{Q}_{1}$  $\langle\Theta\rangle^{\cdot} - \langle\mathcal{A}\rangle(\langle\mathcal{A}\rangle + \langle\phi\rangle) + \frac{1}{3}\langle\Theta\rangle^{2} + \frac{3}{2}\langle\Sigma\rangle^{2} + \frac{1}{2}(\langle\mu\rangle + 3\langle p\rangle) - \Lambda = \mathcal{Q}_{2}$ back-reaction terms

After averaging the inhomogeneous equations we get:

 $\frac{2}{9}\langle\Theta\rangle^{2} - \frac{1}{2}\langle\phi\rangle^{2} + \frac{1}{3}\langle\Theta\rangle\langle\Sigma\rangle - \langle\Sigma\rangle^{2} - \frac{2}{3}(\langle\mu\rangle + \Lambda) - \frac{1}{2}\langle\Pi\rangle - \langle\mathcal{E}\rangle + 2\langle\mathcal{E}\rangle^{2} = \mathcal{Q}_{1}$   $\langle\Theta\rangle^{\cdot} - \langle\mathcal{A}\rangle(\langle\mathcal{A}\rangle + \langle\phi\rangle) + \frac{1}{3}\langle\Theta\rangle^{2} + \frac{3}{2}\langle\Sigma\rangle^{2} + \frac{1}{2}(\langle\mu\rangle + 3\langle p\rangle) - \Lambda = \mathcal{Q}_{2}$ back-reaction terms  $\langle\Sigma\rangle^{\cdot} + \frac{2}{3}\langle\Theta\rangle\langle\Sigma\rangle + \frac{1}{2}\langle\Sigma\rangle^{2} + \langle\mathcal{E}\rangle - \frac{1}{2}\langle\Pi\rangle - \frac{1}{2}(2\langle\mathcal{A}\rangle - \langle\phi\rangle)\langle\mathcal{A}\rangle = \mathcal{Q}_{3}$ 

After averaging the inhomogeneous equations we get:

 $\frac{2}{9} \langle \Theta \rangle^{2} - \frac{1}{2} \langle \phi \rangle^{2} + \frac{1}{3} \langle \Theta \rangle \langle \Sigma \rangle - \langle \Sigma \rangle^{2} - \frac{2}{3} (\langle \mu \rangle + \Lambda) - \frac{1}{2} \langle \Pi \rangle - \langle \mathcal{E} \rangle + 2 \langle \mathcal{E} \rangle^{2} = \mathcal{Q}_{1}$   $\langle \Theta \rangle^{\cdot} - \langle \mathcal{A} \rangle (\langle \mathcal{A} \rangle + \langle \phi \rangle) + \frac{1}{3} \langle \Theta \rangle^{2} + \frac{3}{2} \langle \Sigma \rangle^{2} + \frac{1}{2} (\langle \mu \rangle + 3 \langle p \rangle) - \Lambda = \mathcal{Q}_{2}$ back-reaction terms  $\langle \Sigma \rangle^{\cdot} + \frac{2}{3} \langle \Theta \rangle \langle \Sigma \rangle + \frac{1}{2} \langle \Sigma \rangle^{2} + \langle \mathcal{E} \rangle - \frac{1}{2} \langle \Pi \rangle - \frac{1}{3} (2 \langle \mathcal{A} \rangle - \langle \phi \rangle) \langle \mathcal{A} \rangle = \mathcal{Q}_{3}$ 

where, e.g.,

$$\mathcal{Q}_{3} = \frac{1}{3} \operatorname{Cov}\left(\Theta, \Sigma\right) + \frac{2}{3} \operatorname{Var} \mathcal{A} - \frac{1}{3} \operatorname{Cov}\left(\phi, \mathcal{A}\right) + \frac{2}{3} \left\langle m^{a} D_{a} \mathcal{A} \right\rangle - \frac{1}{2} \operatorname{Var} \Sigma - \frac{1}{3} \left\langle M^{ab} D_{a} \mathcal{A}_{b} \right\rangle \\ - \frac{1}{3} \left\langle \Sigma_{a} \Sigma^{a} \right\rangle + \frac{1}{3} \left\langle \mathcal{A}_{a} \mathcal{A}^{a} \right\rangle + \frac{1}{3} \left\langle \Sigma_{ab} \Sigma^{ab} \right\rangle + 2 \left\langle \alpha_{a} \Sigma^{a} \right\rangle - \frac{2}{3} \left\langle a_{a} \mathcal{A}^{a} \right\rangle.$$

We have the following:

We have the following:

• A set of equations that describe the large-scale properties of a space as LRS Bianchi.

We have the following:

- A set of equations that describe the large-scale properties of a space as LRS Bianchi.
- A set of back-reaction terms that can drive the evolution of expansion and anisotropy (i.e. shear and bulk flow).

We have the following:

- A set of equations that describe the large-scale properties of a space as LRS Bianchi.
- A set of back-reaction terms that can drive the evolution of expansion and anisotropy (i.e. shear and bulk flow).
- A set of relationships that relate average expansion and anisotropy in different foliations.

We have the following:

- A set of equations that describe the large-scale properties of a space as LRS Bianchi.
- A set of back-reaction terms that can drive the evolution of expansion and anisotropy (i.e. shear and bulk flow).
- A set of relationships that relate average expansion and anisotropy in different foliations.

these equations can be used to model emergent anisotropy in cosmology!

We have the following:

- A set of equations that describe the large-scale properties of a space as LRS Bianchi.
- A set of back-reaction terms that can drive the evolution of expansion and anisotropy (i.e. shear and bulk flow).
- A set of relationships that relate average expansion and anisotropy in different foliations.

these equations can be used to model emergent anisotropy in cosmology!

publication to appear!

# Thank you