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Abstract

Standard cosmology has been very successful in describing current observations up to various
tensions. The viewpoint taken here is that exotic ideas should not be exclusively considered until
conventional GR (in all of its glory) has been fully studied. For example, the assumptions for the
existence of exact periodic boundary conditions (appropriate on scales comparable to the homogeneity
scale) used in actual numerical simulations, necessarily imply that the spatial curvature is neglible. We
wish to study the effect of spatial curvature and periodic boundary conditions numerically, particularly
in the special case of G2 models, where some analytical and qualitative results are possible.
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1 Introduction [CE]

Cosmology concerns the large scale behaviour of the Universe within GR. The “Cosmolog-
ical Principle”, which asserts that on large scales the Universe can be well–modeled by a
solution to Einstein’s field equations (EFE) which is spatially homogeneous and isotropic,
leads to the background Friedmann-Lemaıtre-Robertson-Walker (FLRW) model (with
constant spatial curvature) with the cosmological constant, Λ, representing dark energy
and CDM is the acronym for cold dark matter (or so-called ΛCDM concordance cosmology
or standard cosmology for short). Early universe inflation is often regarded as a part of
the standard model. The background spatial curvature of the universe, characterized by
the normalized curvature parameter, is predicted to be negligible in inflationary models.
Regardless of whether inflation is regarded as part of the standard model or not, spatial
curvature is ”assumed” zero.

One of the greatest challenges in cosmology is understanding the origin of the struc-
ture of the universe. Under the hypothesis that cosmic structure grew out of small initial
fluctuations, we can then study their evolution on sufficiently large scales using linear
perturbation theory (LPT). The spatially inhomogeneous perturbations exist on the uni-
form flat FLRW background spacetime. Cosmic inflation provides a causal mechanism for
primordial cosmological perturbations, through the generation of quantum fluctuations in
the inflaton field, which act as seeds for the observed anisotropies in the cosmic microwave
background (CMB) and large scale structure of our universe. At late times and sufficiently
small scales (much smaller than the Hubble scale) fluctuations of the cosmic density are
not small. LPT is then not adequate and clustering needs to be treated non-linearly.
Usually this is studied with (non-relativistic) N-body simulations. Recently cosmolog-
ical non-linear perturbations have been studied at second-order and non perturbative
relativistic effects have been studied computationally.

Standard cosmology has been very successful in describing current observations up to
various possible anomalies, which includes the tension between the recent determination
of the local value of the Hubble constant based on direct measurements of supernovae and
the value derived from the most recent CMB data. In addition, since the Universe is not
isotropic or spatially homogeneous on local scales, the effective gravitational FE on large
scales should perhaps be obtained by averaging the EFE of GR, after which a smoothed
out macroscopic geometry and macroscopic matter fields is obtained. The averaging of
the EFE for local inhomogeneities can lead to significant dynamical backreaction effects
on the average evolution of the Universe at the level of 1 %.
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1.1 Spatial curvature

In standard cosmology the spatial curvature is assumed to be constant and zero (or at
least very small). But there is, as yet, no fully independent constraint with an appropriate
accuracy that gaurentees a value for the magnitude of the effective normalized spatial
curvature Ωk of less than approximately 0.01. Moreover, a small non-zero measurement
of Ωk at such a level perhaps indicates that the assumptions in the standard model are not
satisfied. It has also been increasingly emphasised that if the geometry of the universe does
deviate, even slightly, from the standard FLRW geometry, then the spatial curvature will
no longer necessarily be constant and any effective spatial flatness may not be preserved.

It is necessary to make assumptions to derive models to be used for cosmological
predictions and comparison with observational data. But it is important to check whether
the assumptions “put in” affect the results that “come out”. In addition, we can only
confirm the consistency of assumptions and we cannot rule out alternative explanations.

The assumption of a FLRW background on cosmological scales presents a number of
problems. In particular, the assumptions that underscore the use of a 1+3 spacetime
split and a global time and a background inertial coordinate system (Gaussian normal
coordinates which are approximately Cartesian and orthogonal) over a complete Hubble
scale ‘background’ patch in the standard model lead to the simple conditions that the
spatial curvature must be very small. The assumptions for the existence of exact periodic
boundary conditions (appropriate on scales comparable to the homogeneity scale) imply
necessarily that the spatial curvature is exactly zero. In the actual standard model the
Universe is taken to be simply connected and hence the background is necessarily flat.
Any appropriate approximation will amount to Ωk being less than the perturbation (e.g.,
LPT) scale.

There are also assumptions behind the weak field approach, the applicability of pertur-
bation theory, Gaussian initial conditions, etc., that include neglecting spatial curvature.
It is often claimed that backreaction can be neglected, but in LPT the fluctuations are
assumed Gaussian, which means that at the linear level all averages are zero by construc-
tion. Thus, in standard cosmology the spatial curvature is assumed to be zero, or at
least very small and at most first order in terms of the perturbation approximation, in
order for any subsequent analysis to be valid. Any prediction larger than this indicates
an inconsistency in the approach. The standard model cannot be used to predict a small
spatial curvature.

[Recently measured temperature and polarization power spectra of the CMB and direct
measurements of the spatial curvature Ωk using low-redshift data such as supernovae,
baryon acoustic oscillations and Hubble constant observations, hint at a non-flat (closed)
model with Ωk ∼ 1%.]
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1.2 Overview

The observable part of the Universe is not exactly spatially homogeneous and isotropic
on any spatial scale. From a practical point of view, one is interested in models that are
“close to FL” in some appropriate dynamical sense (Friedmann–Lemaıtre (FL) is used
here, rather than FLRW, since the solution is regarded as an equilibrium state). The
usual way to study deviations from an FL model is to apply linear perturbation theory.
However, it is not known how reliable the linear theory is. Recently numerical cosmology
has been used.

• Viewpoint: Should not study exotic ideas until conventional GR has been fully stud-
ied.

• Consider spatially inhomogeneous models (more general than FL). [perturbed mod-
els].

• In preliminary numerical runs the spatial curvature remains exceptionally small,
particularly in the nhbd of the boundary [and the average spatial curvature goes
down as cell size increase.]

• Do for special inhomogeneous model.

We wish to study the effect of spatial curvature and periodic boundary conditions nu-
merically. In the special case of G2 models some analytical and qualitative results are
possible.
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2 G2 models [Lim]

The simplest spatially inhomogeneous cosmological models have two commuting Killing
vector fields (i.e., models admitting a 2-parameter Abelian isometry group acting transi-
tively on spacelike 2-surfaces), which thus have one degree of freedom as regards spatial
inhomogeneity; such G2 cosmologies are governed by the EFE evolution eqns. which are
partial differential equations (PDE) in two independent variables. In the geometry of the
general G2 class, all metric quantities depend only on the time coordinate t and spatial
coordinate x (and subscripts denote partial differentiation). [At any instant of time, the
state of a G2 cosmology is described by a finite-dimensional dynamical state vector of
functions of the spatial coordinate x. The evolution of a G2 cosmology is thus described
by an orbit in this infinite-dimensional dynamical state space].

Let us present the G2 evolution system in terms of the timelike area gauge in the
Gowdy subcase Σ2 = 0. We assume dust and a single non-zero tilt component, v, where
the cosmological constant is zero, and we consider appropriate initial data for future
dynamics close to ’FL’.

Our choice of variables are the scale-invariant β-normalized variables in the orthonor-
mal frame formalism, in order to obtain the evolution equations as a system of PDE in
first-order symmetric hyperbolic (FOSH) format (which also provides a natural framework
for the numerical studies).
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2.0.1 Initial data

Since we have an unconstrained FOSH system no constraints need be satisfied and we
freely specify {E1

1, Σ−, N×, Σ×, N−, Ω, v} at t = 0 on {−L ≤ x ≤ L}.
We shall consider initial data close to a flat FLRW model of the form (for small ε ∼ 10−4):
{E1

1 = 1 + ε2Ẽ },
{Σ− = εΣ̃−, N× = εÑ×,Σ× = εΣ̃×, N− = εÑ−},
{Ω = 1− ε2Ω̃, v = ε2ṽ}.

Note that it follows that
{q = 1

2
+ ε2q̃,Σ+ = ε2Σ̃+,Ωk = ε2Ω̃k}.

The initial data is given by (for example) εΣ̃− at t = 0 (etc.).

2.0.2 ”Linear” regime (small ε)

We integrate eqn. (1) to obtain:

Ẽ = e
t
2 [1 + o(ε2)], (11)

where we have normalized Ẽ to be unity at t = 0. Eqns. (6,7) also constitute o(ε2)
corrections to zeroth order evolution equations. In the ”linear regime”, Ωk ∼ o(ε2).

2.0.3 Shear and curvature

Eqns. (2 - 5) represent the first order evolution eqns. for the normalized shear and
curvature variables with second order corrections. We immediately see the growing modes
for the normalized curvature variables ∼ e

t
2 and the decaying modes for the normalized

shear variables ∼ e−
3t
2 , corresponding to the familiar eigenvalues {1

2
,−3

2
} for the FL

”saddle point” solution [so that the growth of the shear is suppressed relative to that of
the spatial curvature in the initial linear regime].

Solving eqns. (2 - 5) we obtain (for sufficiently large L):

Σ̃− = e−
3t
2 [σ− + εΣ̄−], (12)

Ñ× = e
t
2 [ν× + εN̄×], (13)

Σ̃× = e−
3t
2 [σ× + εΣ̄×], (14)

Ñ− = e
t
2 [ν− + εN̄−], (15)

where {σ−, σ×, ν−, ν×} are slowly varying (and, for example, ∂xΣ− ∼ (εe
t
2 )Σ̄′−, ∂xΣ× ∼

(εe
t
2 )Σ̄′×, where a prime denotes ∂x). In the regime in which the shear is sub-dominant,

these quantities are constant.
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2.0.4 Spatial curvature

From eqns. (3, 5), to o(ε) eqn. (10) becomes:

∂tΩk = Ωk, (16)

so that Ωk remains small (and of second order initially). More precisely, to o(ε4):

∂tΩk = (εe
t
2 )2[(ν2

−+ν2
×)+ε(ν×N̄×+ν−N̄−)+4

√
3(εe

t
2 )e−2t(σ−ν−+σ×ν×)+(εe

t
2 )e−2t(ν−Σ̄′×+ν×Σ̄′−).

(17)
Clearly to second order we duplicate eqn. (16); the leading order correction to this

eqn. comes from the term ε(ν−N̄×+ν×N̄−), which corresponds to eqn. (17) to next order.
The remaining terms are of order o(εe−2t) and o(ε2). For early times ∂tΩk > 0, and so
the magnitude of the spatial curvature grows. The sign of the next order terms is not
necessarily positive.

Note that at X = L, ∂tΩk = 0.

2.0.5 Boundary

The initial data for any variable X on [−L,L] can be Fourier decomposed:

X = c0 + Σsnsin(
2πn

L
x) + Σcncos(

2πn

L
x), (18)

where {sn, cn} are independent of x (and summation is from n = 1−NL), and there is a
fixed small scale cutoff N0 so that NL < LN0. Note that at t = 0 the average values are
< X >= c0, which is usually taken to be zero, and < X ′ >= 0.

One can consider periodic boundary conditions atX = ±L. At the (periodic) boundary
X = L, we have that:

X(L) = c0 + Σcn, X ′(L) =
2π

L
xΣnsn, (19)

As the cell size increases (L → L̄, NL̄ ≤ L̄N0), the number of terms in the summations
go up (by L̄/L) and the size of each Fourier coefficient goes down (by L/L̄), so that
X(L̄) ∼ X(L) and X ′(L̄) ∼ L

L̄
X ′(L), so that spatial gradients (and especially their

average values) of X decrease relative to X on the boundary as the cell size increases.
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2.0.6 Numerical methods

One numerical method for resolving small scale structure is adaptive mesh refinement
(AMR). However, if we focus on our past light cone, we (need not use AMR and) can
instead use a coordinate system adapted to this. In particular, we can choose a coordinate
system (T,X) that ”shrinks exponentially with time.” We end the numerical grid at a
fixed coordinate value X = L. Ordinarily, that would call for a boundary condition
at L, but we will use the method of excision, which can be applied to any hyperbolic
equations where the outer boundary is chosen so that all modes are outgoing. In that
case one simply implements the equations of motion at the outer boundary, no boundary
condition is needed (or even allowed).

[The combinations of the equations of motion clearly shows that N× and N− and
−N×, N− flow away from the boundary; the points beyond which the flow is entirely
outward. Thus, as long as L is chosen large enough and as long as the boundary does not
grow too large during the simulation, the surface X = L will be a good excision boundary.
]

2.0.7 Example

We choose {E1
1 = 1}, ε = 10−4 and all coefficients {ai, bi} of order unity. We consider

modes n = 4, 8, 16. For each of {Σ̃−, Ñ×, Σ̃×, Ñ−}, we take (for random coefficients)

X̃ = a4
i sin(

8π

L
x) + b16

i cos(
32π

L
x), (20)

For {Ω = 1− ε2Ω̃, v = ε2ṽ}, we assume

Ω̃ = ω8[1 +
ω

L
x]sin(

16π

L
x), (21)

ṽ = ν8[1 +
ν

L
x]sin(

16π

L
x). (22)

We shall consider the following:
I: non periodic bc - but we take ω = ν = 0 (for comparison)
II: non periodic bc - and we assume ω, ν vary in the range {0.01− 0.1}.
And compute
I: Ωk on spatial hypersurfaces t = ti.
II: value of Ωk at x = L

4
as a function of time.

III: average value of Ωk as a function of time.
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Additions:
1. Remember that one aim is to critique the results on spatial curvature in actual numerical simula-

tions. (b).
—–
2. In the general inhomogeneous case in actual numerical simulations a cell of length L is taken and

the system integrated where the periodic BC at L is applied at ALL times. The periodic BC is used at
every step e.g. to compute spatial derivatives near the edges of the cell.

General 3D set up:global cartesian coords. metric variables. initial conditions on the metric. condi-
tions on boundary for all time (implying spatial curvature zero on boundary).

Effect of periodic BC: Maybe depends on formulation: there is a different sense of periodicity in
different formulations [depending on independent variables used]

—
3. Do periodic initial conditions guarantee periodic evolution.?
No general math theorems? Indeed, theorems by Choquet-Bruhat and Geroch do not indicate the

preservation of discrete symmetries (that periodic boundary conditions imply). Mixed opinions whether
periodic initial conditions guarantee periodic evolution or not [WC, P, T].

If it were true i dont see why the numerical anlaysists would impose them since it is quite expensive
computationally.

But, note that if it were true, then it implies that the spatial curvature is zero at L for all times,
which is one of the points i am trying to argue.

—
4. a. If you impose periodic BCs with a chosen L, then the longest possible wavelength is L. but in

actual N-body simulations a cell of length L is taken to be a fraction of the Hubble scale. So are they
ignoring long wavelength inhomogeneities ” bigger than L”?] [But why would we a priori assume that
long wavelength inhomogeneities are absent in the universe?]. What is effect on the numerical simulations
of making this assumption?

[P: I am well aware of this issue/concern with the simulations (especially when the large-scle cutoff is
indeed below the Hubble scale, as may be necessary if one also wants to resolve small (Mpc) scales). There
will indeed be a cutoff in practice in the power spectrum of the inhomogeneities right away from the initial
conditions. It is one of the concerns associated to the periodic BCs, since it is also a periodicity imposed
at a certain scale typically smaller than the horizon scale. (Leads to effects: especially in non-linear
regime)]

b. But you can choose an L as big as you want?
You cannot allow L to be arbitrarily large, because theoretically the Cartesian type coordinates

become ill defined [unless the spatial curvature is zero or exceedingly small], which will lead to coordinate
singularities. In actual N-body simulations you restrict cell to finite size (fraction of Hubble scale say).

And there is philosophical issue with large L!
——
5. In the G2 case, the cell of size L is now linear [‘globa’l x coord]. Hence things change when

moving to a FOSH formulation of the evolution eqns? Do you need to specify bc? Do periodic BC initial
conditions ensure periodic evolution?

[WC But using long wavelength shows that flat FL is unstable. This is enough to argue that spatial
will grow from zero, assuming that long wavelength inhomogeneities, regardless of periodicity, is present
in the real universe.]

In G2: FOSH formulation. Orthonormal frame. Variables are NOT metric variables. Initial conditions
are NOT on metric functions. Meaning of periodic initial data has different meaning here [does not imply
periodicity in the usual standard sense]. Different numerical set up [how to compare with usual N-body
simulations?].

[This is possible in G2 since E22, E33, E44 decouple: as go to G1 and then G0 probably periodicity
in normal sense restored.


