Corfu Tensions in Cosmology – Sep 2022

Reaching precision cosmology faster with velocities

In collaboration with V. Alfradique, L. Amendola, T. Castro, K. Garcia, B. Moraes, B. Siffert, A. Toubiana

Miguel Quartin Univ. Fed. Rio de Janeiro Univ. Heidelberg

SNe la & Structure

SNe Ia → traditionally a background cosmological probe

- There are (at least) 2 ways SNe Ia can measure also cosmic structure
 - Through SNe lensing ("hard")

Amendola, Kainulainen, Marra & Quartin (1002.1232, PRL) Marra, Quartin & Amendola (1304.7689, PRD) Quartin, Marra & Amendola (1307.1155, PRD) Macaulay, Davis et al., (1607.03966, MNRAS) Castro & Quartin (1403.0293, MNRASL)

Peculiar-velocity correlations of SNe ("easy")

 Both methods work even without cross-correlation with largescale structure (LSS) surveys

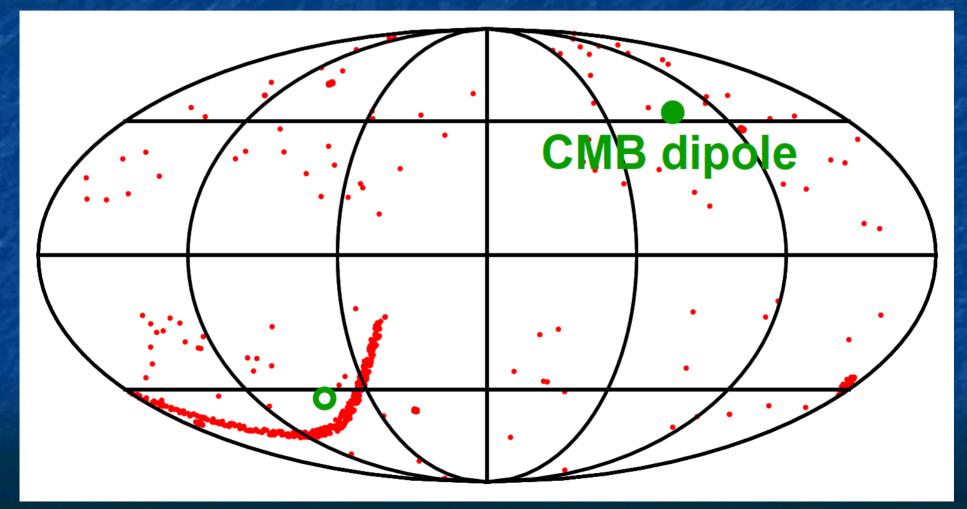
SN Peculiar Velocity

Lensing mostly affects distant SNe (*z* > ~0.4
For *z* < ~0.4 "Peculiar velocities" (PV) effect becomes relevant
Crucial point: these velocities are correlated
Correlations → linear matter power spectrum*Howlett*+
We can measure them & infer the power spectrum!
Basically parametrized by either *f*(*z*) σ₈(*z*) or *γ* σ₈

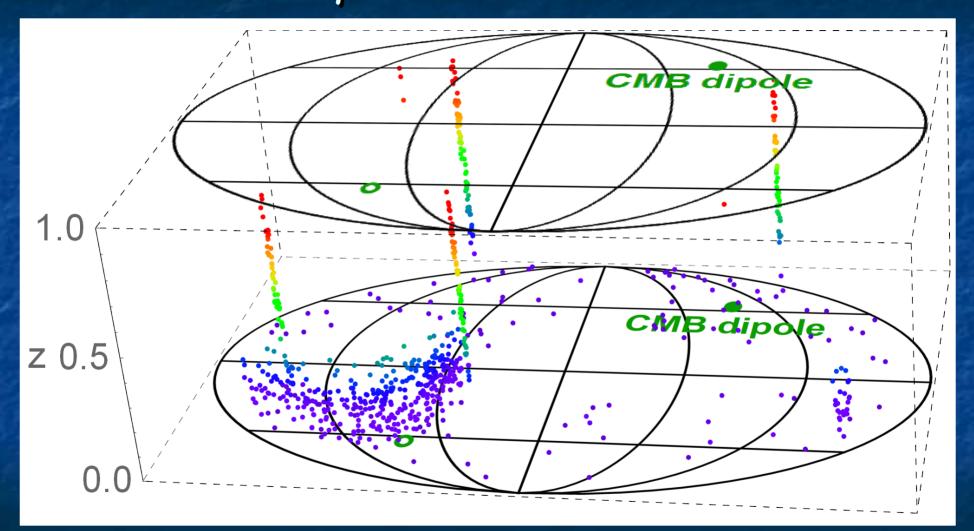
 $f \equiv \frac{d \log \delta_m}{d \log a} \equiv \Omega_m(z)^{\gamma}$

Gordon, Land & Slosar (0705.1718, PRL) Castro, Quartin & Benitez (1511.08695, PhysDarkUniv) Howlett, Robotham, Lagos, Kim (1708.08236) T. Castro

JLA supernova distribution In galactic coordinates (as cosmologists like)

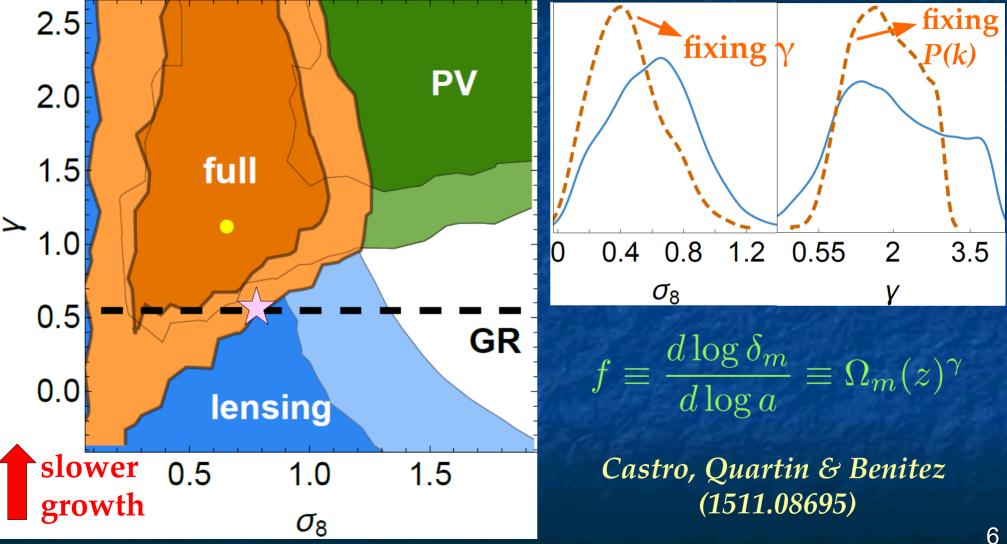


JLA supernova distribution



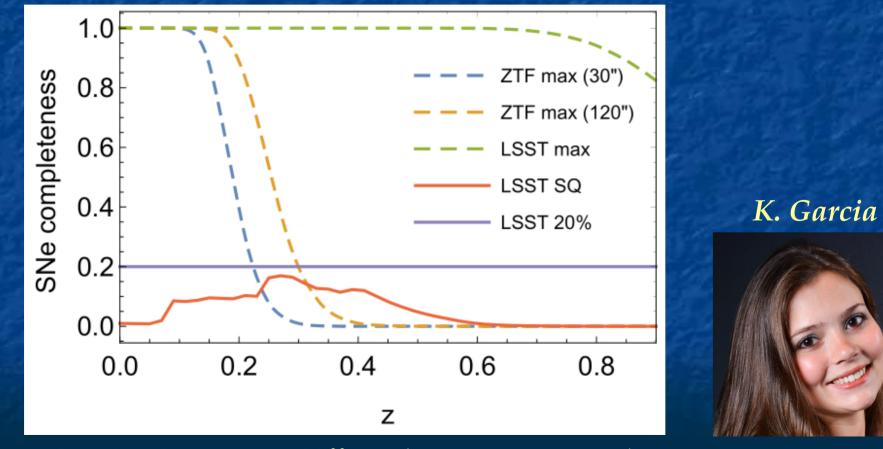
Castro, Quartin & Benitez (1511.08695)

JLA SN constraints (lens+PV)



SN completeness

 Status Quo of LSST strategy (as of 2019): quality cuts remove most SNe (specially at low-z and hi-z)



Garcia, Quartin & Siffert (1905.00746, PDU)

The 6 power spectra

• $P_{_{777}}$ does not depend on the bias of your tracer

Adding P_{δδ} and P_{δv} increases the signal and combined they constrain better both the cosmological and bias parameters
 We refer to the method that uses of all three as: 3×2pt g-s

SNe also can trace the density field

 With LSST we can use both galaxies and SNe to measure δ and use SNe to measure *v* simultaneously

This is the bases of the 6×2pt g-s-s method

Let's compare results of 1×2, 3×2 and 6×2pt approaches

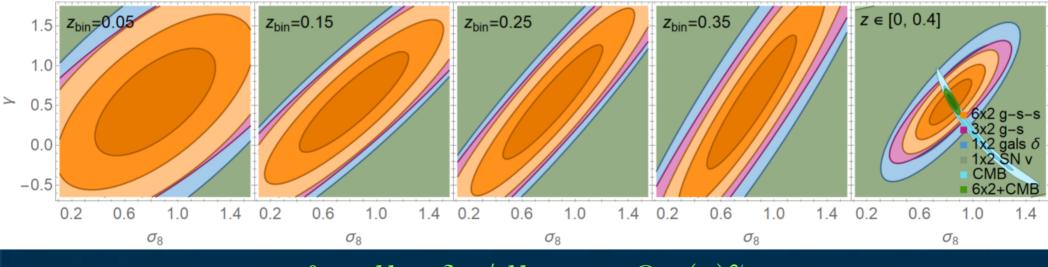
Quartin, Amendola & Moraes (2111.05185, MNRAS)

6×2pt vs 3×2pt vs 1×2pt

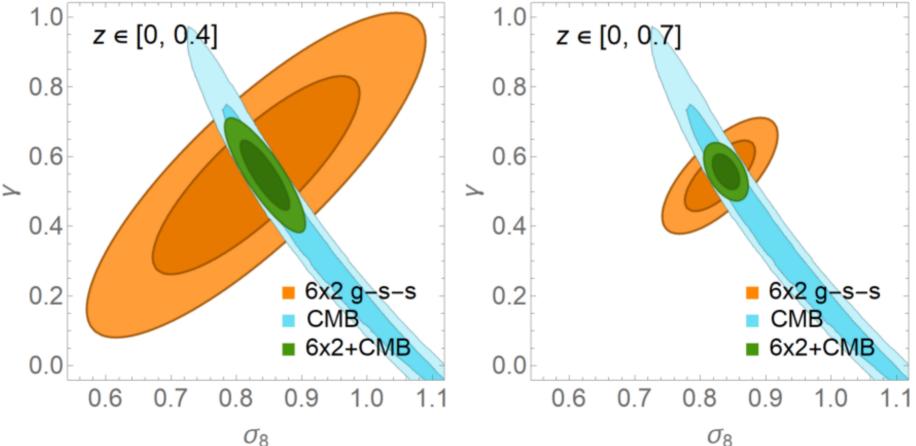
Assuming

a 4MOST-like spectroscopic survey (7500 deg²) + LSST SNe detections with 15% completeness (0 < z < 0.4)</p>

- one pair of bias (nuisance) parameters {*b*_g, *b*_s} per redshift bin
- 3 global non-linear RSD parameters
- Constraints are orthogonal to those from the CMB!



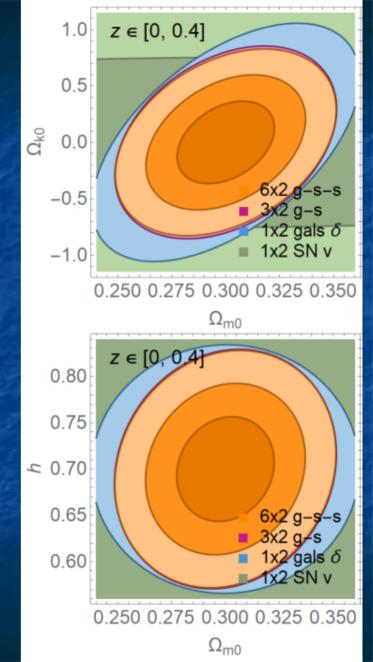
 $f \equiv d \log \delta_m / d \log a \equiv \Omega_m(z)^{\gamma}$





6×2 + CMB: factor	r <mark>of 5</mark> improvements
-------------------	----------------------------------

1σ uncertainties in:	σ_8	γ	h	Ω_{m0}	Ω_{k0}
Conservative	0.10	0.19	0.037	0.015	0.24
Conservative (no AP)	0.11	0.20	0.070	0.019	0.36
Conservative (flat)	0.10	0.19	0.028	0.014	-
Conser. $(k_{\max} = 0.05)$	0.15	0.28	0.12	0.031	0.39
Conser. $(k_{\max} = 0.15)$	0.091	0.16	0.019	0.010	0.19
CMB(*)	0.11	0.29	0.037	0.064	0.017
Conservative + CMB	0.022	0.058	0.0073	0.010	0.0037



Binary Neutron Star GWs

- Standard sirens measure absolute distance Can also constrain H₀, contrary to SNe alone Ligo-Virgo only detected 1 siren so far O1 – O3 Many more w/ Einstein Telescope or Cosmic Explorer Advanges: No known fundamental intrinsic scatter of sirens Better S/N \rightarrow better distances \rightarrow @ low-z outperforms SN Less systematics than SNe Disadvanges Smaller event rate than SNe
 - Electromagnetic follow-up is resource intensive

V. Alfradique

A. Toubiana

BNS sirens & 6x2pt

Sirens can measure both H_0 and perturbation parameters to good precision

 PV improves H₀ precision by ~30%

 Third gen GW detectors not in the near future

Telescope	$t_{\exp}^{\max}(s)$	z_{\max}	$f_{20\mathrm{deg}^2}$	$f_{\rm obs}$	$N_{SS}/{ m yr}$	F_{time}
Rubin	90	0.49	0.89	0.4	819	0.1
WFST	200	0.27	0.94	0.4	244	0.1
ZTF	3200	0.17	0.98	0.4	78	0.1
Mephisto	140	0.23	0.96	0.4	157	0.1

	EL PA	22.21			1.00	
1σ uncertainties in:	σ_8	γ	H_0	Ω_{m0}	Ω_{k0}	
Low $z \ (0 \le z \le 0.5)$						
DESI BGS gg	0.081	0.165	2.1	0.0095	0.171	
Rubin $3 \times 2 pt g-k$	0.079	0.137	2.1	0.0094	0.168	
Rubin 6 × 2pt g–k–k	0.070	0.129	2.1	0.0093	0.167	
Rubin BNS distances	-	-	0.12	0.24	0.41	
Rubin BNS dist + 6×2 pt	0.069	0.128	0.085	0.0063	0.018	

Alfradique, Quartin, Amendola, Castro & Toubiana (2111.05185)

Model-independent clustering

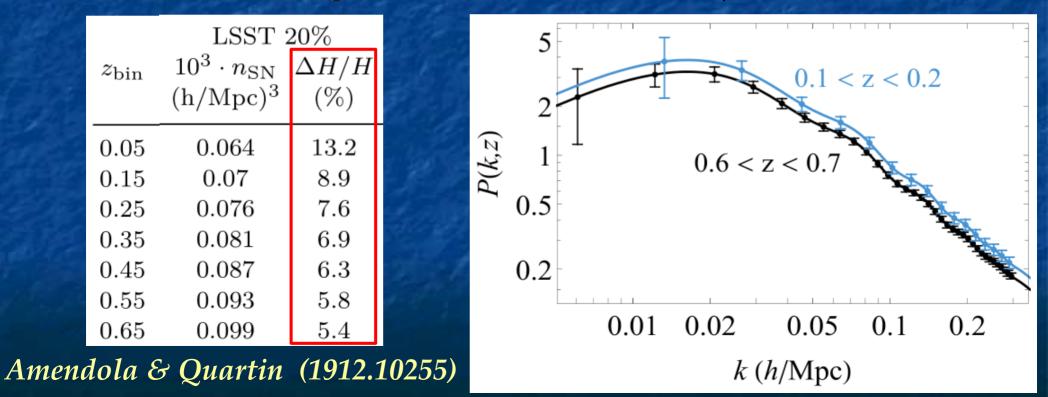
The most common way of using "full shape" P(k) measurements is to assume a given parametrization

- Both background and perturbation parameters
- Alcock-Paczynski (AP) + Kaiser effects (RSD), allow modelindependent constraints
- In particular, it is possible to constrain $E(z) = H(z)/H_0$
 - Only a few model-independent observables of *H*(*z*)
 - Radial BAO measures $H r_S \rightarrow$ subject to understanding of r_S : the sound horizon at the drag epoch
 - Redshift-drift → needs lots of time in Extremely Large Telescopes (*Liske*+ 0802.1532, *Quartin & Amendola* 0909.4954)
 - Cosmic Chronometers → rely on astrophysical modeling of passive galaxies & pop synthesis simulations (*Liu*+ 1509.08046)

Model-independent clustering

The Clustering of Standard Candles method: combines SN velocities and SN clustering

- Good precision in both model-indep and model-dep cases
- Also model-indep measurements of P(k,z) and $\beta(k,z)$



Limits of the method?

SYSTEMATICS?

- Like in standard full-shape P(k) measurements, precision increases fast with higher k_{MAX}
 - To which scales can we get while maintaining accuracy?
- Big effort in the cosmology community to develop solid mildly non-linear theory (0.05 – 0.4 *h*/Mpc)
 - EFT of LSS \rightarrow counter-terms, higher-order bias, etc.
 - Velocities help measuring bias parameters → may increase robustness
- Model-independent method remains precise when including 1loop EFT nuisance parameters

Challenges for PV

Peculiar velocity tracers exist mostly in high density regions
 Velocity and density tracers become correlated
 What we observed is momentum (product of density and velocity)
 Howlett 1906.02875 p(r) = (1 + δ(r))v(r)

 $(2\pi)^{3}\delta^{D}(\boldsymbol{k}-\boldsymbol{k}')P^{p}(\boldsymbol{k}) = \langle (1+\delta_{g}(\boldsymbol{k}))u(\boldsymbol{k})(1+\delta_{g}(\boldsymbol{k}'))u(\boldsymbol{k}')\rangle$

 $= \langle u(\mathbf{k})u(\mathbf{k}')\rangle + \langle u(\mathbf{k})\delta_{g}(\mathbf{k}')u(\mathbf{k}')\rangle + \langle \delta_{g}(\mathbf{k})u(\mathbf{k})u(\mathbf{k}')\rangle + \langle \delta_{g}(\mathbf{k})u(\mathbf{k})\delta_{g}(\mathbf{k}')u(\mathbf{k}')\rangle$

• This introduces non-linearities at scales of $k > \sim 0.1$ h/Mpc

 Like for density surveys, in practice the observing window function needs to be well modelled

FKP-like or Yamamoto-like estimators required

Feldman, Kaiser & Peacock 1994; Yamamoto 2006

Conclusions

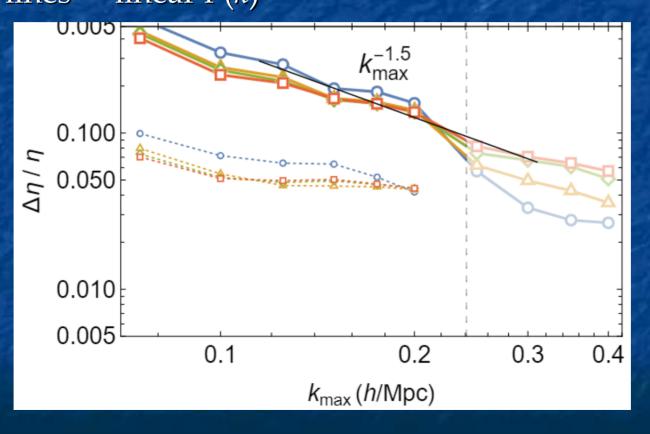
SNe & sirens can constrain also perturbation parameters! Lensing and peculiar velocities very complementary • Lensing: $z > 0.4 \rightarrow$ non-Gaussianity in the Hubble Diag. Pec. Vel.: $z < 0.5 \rightarrow$ correlations in the Hubble Diag. • Measure density & velocity possible with only SN: $P_{\delta\delta}$, $P_{\delta v}$, P_{vv} It gets even better when combining with galaxies \rightarrow 6×2pt • Very good precision with LSST for $\sigma_8 \& \gamma$ **It is a new observable & a nice cross-check of** ΛCDM SNe PV & weak-lensing traditionally considered noise Don't throw away the noise... Recycle!

Conclusions

SNe & sirens can constrain also perturbation parameters! Lensing and peculiar velocities very complementary • Lensing: $z > 0.4 \rightarrow$ non-Gaussianity in the Hubble Diag. ■ Pec. Vel.: $z < 0.5 \rightarrow$ correlations in the Hubble Diag. • Measure density & velocity possible with only SN: $P_{\delta\delta}$, $P_{\delta\nu}$, $P_{\mu\nu}$ It gets even better when combining with galaxies \rightarrow 6×2pt • Very good precision with LSST for $\sigma_8 \& \gamma$ **It is a new observable & a nice cross-check of** ΛCDM SNe PV & weak-lensing traditionally considered noise Don't throw away the noise... Recycle!

Extra Slides

1-loop Model-Independent Forecasts Full lines → 1-loop with uninformative priors Dashed lines → linear P(k)



Amendola, Pietroni & Quartin (2205.00569)

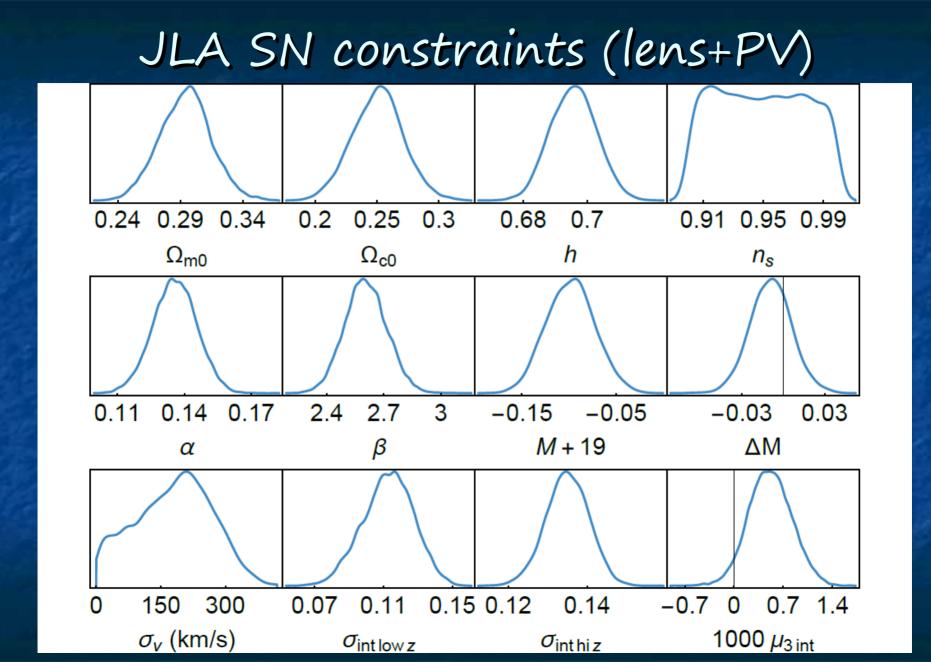
 $v \equiv \boldsymbol{v} \cdot \hat{\boldsymbol{r}}$ Power spectra $\beta \equiv f/b$ • There are 6 spectra of interest and 2 bias functions b(z) $\mu\equiv oldsymbol{\hat{k}}\cdotoldsymbol{\hat{r}}$ $P_{\rm gg}(k,\mu,z) = \left[1 + \beta_{\rm g}\mu^2\right]^2 b_{\rm g}^2 S_{\rm g}^2 D_+^2 P_{\rm mm}(k) + \frac{1}{n_{\rm g}}$ $P_{\rm ss}(k,\mu,z) = \left[1 + \beta_{\rm s}\mu^2\right]^2 b_{\rm s}^2 S_{\rm s}^2 D_+^2 P_{\rm mm}(k) + \frac{1}{n_{\rm s}}$ $P_{\rm gs}(k,\mu,z) = \left[1 + \beta_{\rm g}\mu^2\right] \left[1 + \beta_{\rm s}\mu^2\right] b_{\rm g} b_{\rm s} S_{\rm g} S_{\rm s} D_+^2 P_{\rm mm}(k) + \frac{n_{\rm gs}}{n_{\rm g} n_{\rm s}}$ $P_{\rm gv}(k,\mu,z) = \frac{H\mu}{k(1+z)} [1 + \beta_{\rm g}\mu^2] b_{\rm g} S_{\rm g} S_{\rm v} f D_+^2 P_{\rm mm}(k)$ $P_{\rm sv}(k,\mu,z) = \frac{H\mu}{k(1+z)} [1+\beta_{\rm s}\mu^2] b_{\rm s} S_{\rm s} S_{\rm v} f D_+^2 P_{\rm mm}(k)$ $P_{\rm vv}(k,\mu,z) = \left[\frac{H\mu}{k(1+z)}\right]^2 S_{\rm v}^2 f^2 D_+^2 P_{\rm mm}(k) + \frac{\sigma_{v,\rm eff}^2}{n_{\rm s}}$ 22

JLA SN constraints (lens+PV)

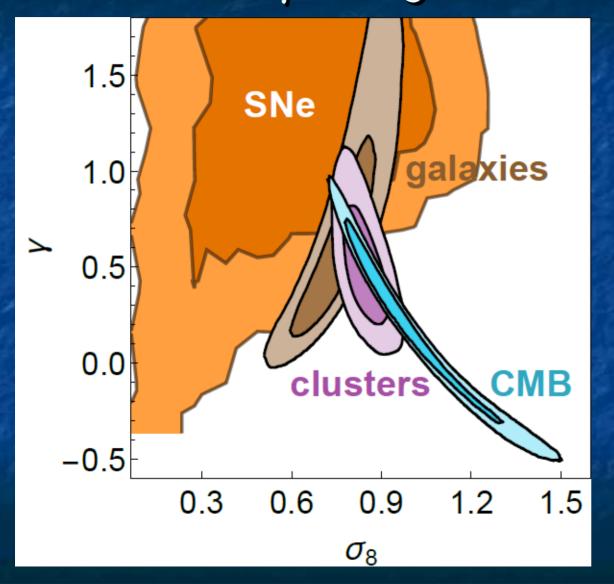
These correlations are all linear – we can model them and infer properties of the matter power spectrum

- Problem: JLA removed (by modelling) the PV correlations it was noise to them
- We analyzed JLA with a 14-dimensional MCMC
 - **6** cosmo params: Ω_{b0} , Ω_{c0} , h, A, n_s , γ
 - **8 nuisance params:** M, α , β , ΔM , $\sigma_{v-nonlin}$, σ_{int1} , σ_{int2} , μ_{3int}
 - Priors only needed in h, n_s and Ω_{b0}

 $L_{PV} \propto \frac{1}{\sqrt{|C^{PV}|}} \exp \left[-\frac{1}{2}\delta_{DM}^{T} (C^{PV})^{-1}\delta_{DM}\right] \qquad \delta_{DM} \equiv DM - DM_{\text{fid}}$



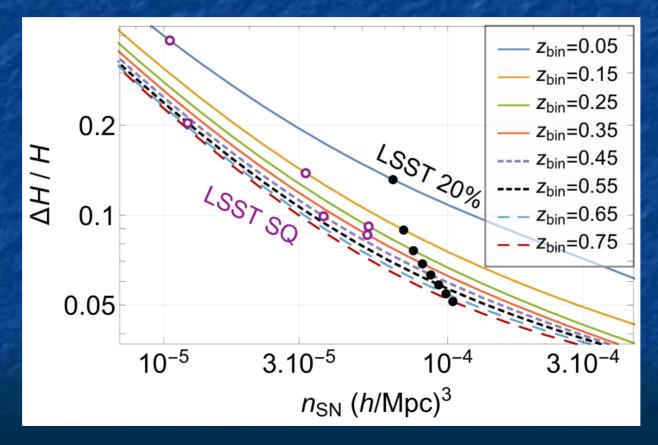
Comparing with other data



Castro, Quartin & Benitez (1511.08695, PhysDarkUniv)

Mantz, von der Linden et al., (1407.4516, MNRAS)

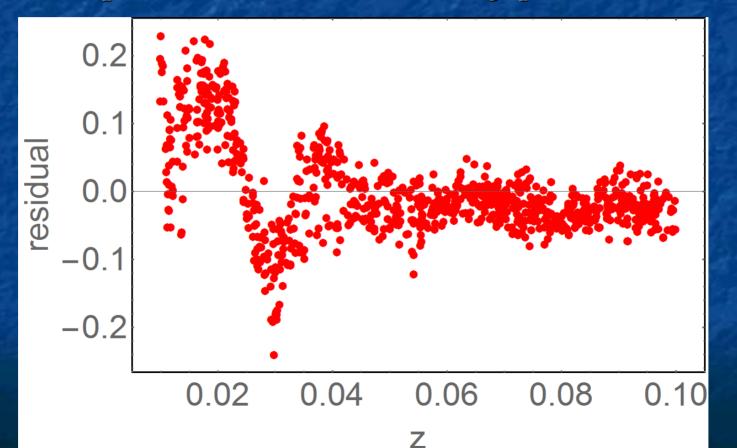
Information scaling with n_{SN} FM shows how the P_{δδ} and P_{vv} information scales with the number density of SN → still far from the CV limit!



Amendola & Quartin (1912.10255)

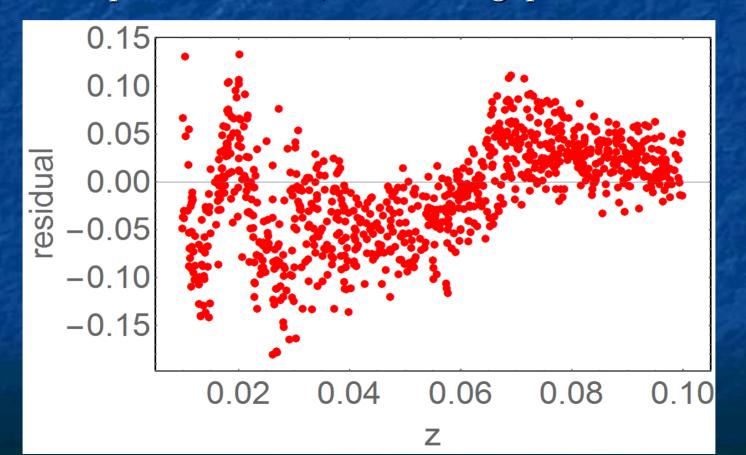
Hubble Diagram residual with PV's

To get some intuition \rightarrow ideal case of perfect SNe Ia (i.e. no intrinsic dispersion, $\sigma_{int} = 0$) in a 400 deg² patch



Hubble Diagram residual with PV's

To get some intuition \rightarrow ideal case of perfect SNe Ia (i.e. no intrinsic dispersion, $\sigma_{int} = 0$) in a 400 deg² patch



28

Hubble Diagram residual with PV's

The signal becomes weaker for realistic supernovae (σ_{int} = 0.12 mag) → but it is still measurable

