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SNe la & Structure

= SNe Ia — traditionally a background cosmological probe

» There are (at least) 2 ways SNe Ia can measure also cosmic
structure

= Through SNe lensing (“hard”)
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Quartin, Marra & Amendola (1307.1155, PRD)
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s Peculiar-velocity correlations of SNe (“easy”)

= Both methods work even without cross-correlation with large-
scale structure (LSS) surveys



SN Peculiar Velocity

= Lensing mostly affects distant SNe (z > ~0.4
» For z < ~0.4 “Peculiar velocities” (I’V) etfect becomes relevant
= Crucial point: these velocities are correlated

» Correlations — linear matter power spectrumHowlett+
= We can measure them & infer the power spectrum!
» Basically parametrized by either f(z) os(z) or y oz
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JLA supernova distribution

= In galactic coordinates (as cosmologists like)




JLA su;oemova distribution
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JLA SN constraints (lens+PV)
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SN completeness

Status Quo of LSST strategy (as of 2019): quality cuts remove
most SNe (specially at low-z and hi-z)
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The 6 power spectra

= P does not depend on the bias of your tracer

» Adding P, and P, increases the signal and combined they

constrain better both the cosmological and bias parameters
= We refer to the method that uses of all three as: 3x2pt g-s
= SNe also can trace the density field

= With LSST we can use both galaxies and SNe to measure 0
and use SNe to measure v simultaneously

= This is the bases of the 6x2pt g-s-s method
» Let’s compare results of 1x2, 3x2 and 6x2pt approaches

Quartin, Amendola & Moraes (2111.05185, MNRAS)



ox2pt vs Sx2pt vs 1x2pt

= Assuming

= a 4MOST-like spectroscopic survey (7500 deg*) + LSST SNe
detections with 15% completeness (0 < z < 0.4)

= one pair of bias (nuisance) parameters {b;, bs} per redshift bin
= 3 global non-linear RSD parameters

= Constraints are orthogonal to those from the CMB!

~/m3Ix2 g-s
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Future 6x2pt vs Planck CMB data

Constraints are orthogonal to those from the CMB!
7500 deg?, 15% SN completeness 15000 deg?, 30% SN completeness
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6x2pt constraints

= Results marginalized over all other
parameters

= Similar precision to CMB TTTEEE (no
lensing), but very complementary

= 6x2 + CMB: factor of 5 improvements

lo uncertainties in: o ~ h Qo

Conservative 0.10 0.19 0.037 0.015 0.24

Conservative (no AP) 0.11 0.20 0.070 0.019 0.36
Conservative (flat) 0.10 0.19 0.028 0.014 -
Comser. (kmax = 0.05) 0.15 0.28 0.12  0.031  0.39
Conser. (kymax = 0.15) 0.091  0.16  0.019 0.010  0.19

CMB (*) 0.11  0.29 0.037 0.064 0.017

Conservative + CMB 0.022 0.058 0.0073 0.010 0.0037
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Binary Neutron Star GWS

Standard sirens measure absolute distance

= Can also constrain Hp, contrary to SNe alone
Ligo-Virgo only detected 1 siren so far O1 — O3

= Many more w/ Einstein Telescope or Cosmic Explorer
Advanges:

= No known fundamental intrinsic scatter of sirens

m Better S/N — better distances — @ low-z outperforms SN

= Less systematics than SNe
Disadvanges

= Smaller event rate than SNe

» Electromagnetic follow-up is resource intensive

o

A. Toubiana
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BNS sirens & ox2pt

Sirens can measure

bOth H() and Telescope tg)l(a\ (S) Zmax fB(J deg? fobs NSS/YI' Ftime
perturb ation Rubin 90 0.89 04 819
parameters to gOOd WEST 200 0.94 0.4 24_4
o ZTF 3200 0.98 0.4 78
precision Mephisto 140 0.96 0.4 157
s PV improves Hy
precision by ~30% lo uncertainties in: o8 v Ho Qoo Qo

Low z (0 < z € 0.5)

= Third gen GW

detectors not in DESI BGS gg 0.081 0.165

Rubin 3 x 2pt gk 0.079 0.137

Rubin 6 x 2pt g-k-k 0.070 0.129
Rubin BNS distances - -

| Rubin BNS dist + 6 x 2pt  0.069 0.128

the near future

2.1 0.0095 0.171
2.1 0.0094 0.168
2.1 0.0093 0.167
0.12  0.24 0.41

Alfradique, Quartin, Amendola, Castro & Toubiana (2111.05185)
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Model-independent clustering

The most common way of using “full shape” P(k) measurements
1S to assume a given parametrization

= Both background and perturbation parameters
Alcock-Paczynski (AP) + Kaiser effects (RSD), allow model-
independent constraints
In particular, it is possible to constrain E(z) = H(z)/Ho

= Only a few model-independent observables of H(z)

= Radial BAO measures H rs — subject to understanding of rs: the
sound horizon at the drag epoch

= Redshift-drift — needs lots of time in Extremely Large
Telescopes (Liske+ 0802.1532, Quartin & Amendola 0909.4954)

= Cosmic Chronometers — rely on astrophysical modeling of
passive galaxies & pop synthesis simulations (Liu+ 1509.08046)
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Model-independent clustering

The Clustering of Standard Candles method: combines SN
velocities and SN clustering

= Good precision in both model-indep and model-dep cases
= Also model-indep measurements of P(k,z) and p(k z)

LSST 20%
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Limits of the method?

SYSTEMATICS?

Like in standard full-shape P(k) measurements, precision
increases tast with higher kyiax

= To which scales can we get while maintaining accuracy?

Big effort in the cosmology community to develop solid mildly
non-linear theory (0.05 — 0.4 /;/Mpc)

s EFT of LSS — counter-terms, higher-order bias, etc.

= Velocities help measuring bias parameters — may increase
robustness

Model-independent method remains precise when including 1-
loop EFT nuisance parameters
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Challenges for PV

Peculiar velocity tracers exist mostly in high density regions
= Velocity and density tracers become correlated
= What we observed is momentum (product of density and velocity)

Howlett 1906.02875  p(r) = (1 4 6(r))v(r)

)’ 8Pk — KPP (k) = (1 + 8g(k)u(k)(1 + 85(k")u(k’))

= (u(k)u(k")) + (u(k)3y(k"u(k")) + (3 (k)u(kyu(k’)) + (8,(k)u(k)s (k" )u(k"))

= This introduces non-linearities at scales of k> ~0.1 h/Mpc

Like for density surveys, in practice the observing window
function needs to be well modelled

s FKP-like or Yamamoto-like estimators required
Feldman, Kaiser & Peacock 1994; Yamamoto 2006
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Conclusions

SNe & sirens can constrain also perturbation parameters!

Lensing and peculiar velocities very complementary
= Lensing: z>0.4 — non-Gaussianity in the Hubble Diag.
m Pec. Vel.: z<0.5 — correlations in the Hubble Diag.
= Measure density & velocity possible with only SN: P.

00 /

va’ P
= [t gets even better when combining with galaxies — 6x2pt
Very good precision with LSST for o, & vy

m [tis a new observable & a nice cross-check of ACDM

SNe PV & weak-lensing traditionally considered noise
= Don’t throw away the noise... Recyclel!

\AY%
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Conclusions

SNe & sirens can constrain also perturbation parameters!

Lensing and peculiar velocities very complementary

Very good precision with LSST for o, & vy

m [tis a new observable & a nice cross-check of ACDM

SNe PV & weak-lensing traditionally considered noise
= Don’t throw away the noise... Recyclel!

Lensing: z>0.4 — non-Gaussianity in the Hubble Diag.
Pec. Vel.: z<0.5 — correlations in the Hubble Diag.

Measure density & velocity possible with only SN: P

00 /

va’ P
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It gets even better when combining with galaxies — 6x2pt
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Extra Slides
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1 -loop Model-Independent Forecasts

Full lines — 1-loop with uninformative priors
Dashed lines — linear P(k)

Bk = TS

Amendola, Pietroni & Quartin (2205.00569)
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Power spectra A
= There are 6 spectra of interest and 2 bias functions b(z) B.= Jf / b

2 1 == k-r
Pye(k, py2) = [V + Bep®]” b2 S D3 P (k) + ~
g 2 1
Py (k, i, 2) = [1+ Bsp®]” b5 SZ D3 Py (k) + —
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JLA SN constraints (lens+PV)

m These correlations are all linear — we can model them and infer
properties of the matter power spectrum

= Problem: JLA removed (by modelling) the PV correlations —
it was noise to them

= We analyzed JLA with a 14-dimensional MCMC
m 6 cosmo params: Oy, O, 1, A, 715, ¥
m 8 nuisance params: M, &, 8, AM, Oy-nonlin, Oint1, Oint2, 3int

= Priors only needed in /i, n, and (i

1 1 " Pyl a, ¥
vaO( ‘CPV‘eXp _§5DM(C ) 5DM 5DM_DM DMﬁd
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JLA SN constraints (lens+PV)
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Comparing with other data

Castro, Quartin & Benitez
(1511.08695, PhysDarkUniv)

CMB Mantz, von der Linden et al.,
(1407.4516, MNRAS)
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Information scaling with n,

FM shows how the Pss and P, information scales with the
number density of SN — still far from the CV limit!
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Hubole Diagram residual with PV's

To get some intuition — ideal case of perfect SNe Ia (i.e. no
intrinsic dispersion, o = 0) in a 400 deg® patch
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Hubole Diagram residual with PV's

To get some intuition — ideal case of perfect SNe Ia (i.e. no
intrinsic dispersion, o = 0) in a 400 deg® patch
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Hubole Diagram residual with PV's

The signal becomes weaker for realistic supernovae (Oi = 0.12
mag) — but it is still measurable
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