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Motivation
• ΛCDMmodel has been tested by numerous probes and has
provided a remarkable explanation for cosmological observations
such as CMB anisotropies and BAO.
• However, there has been a growing discrepancy between the
measured values of H0 as inferred from early Universe probes and
late-Universe probes.
• SH0ES collaboration recently obtained H0 = 74.03± 1.42
km/s/Mpc. Other distance-ladder measurements lead to other
values, most of them in rough agreement with SH0ES.
•The PLANCK collaboration, assuming ΛCDMmodel obtained
H0 = 67.36± 0.54 km/s/Mpc→in 4.4σ tension with the value
reported by SH0ES.
• Various theoretical solutions/models were hitherto suggested to
solve the H0 discrepancy. 1/19



Model Overview
• The action of the new gravitational scalar-tensor theories is a

function of the metric and its derivatives only-

S =
∫︁

d4
√︀
−g f

(︀
R, (∇R)2,�R

)︀
, (1)

with (∇R)2 = gμν∇μR∇νR [A. Naruko1, D. Yoshida1 and S. Mukohyama,

Class. Quantum Grav. 33 (2016)].
• The Lagrangian contains the Ricci scalar and its first and second

derivatives, in a specific combination that makes them free of
ghosts.

• In the Einstein frame they are proved to be a subclass of
bi-scalar extensions of general relativity

• One can rewrite the action by converting the above Lagrangian,
using double Lagrange multipliers, to actions of multi-scalar
fields coupled minimally to gravity.



• Fixing the dependence of f on�R = β, in the present work, we
consider theories with the following form of f

f(R, (∇R)2,�R) =K ((R, (∇R)2) + G (R, (∇R)2)�R. (2)

• In this case, the action (1) transforms to
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∫︁

d4x
√︀
−ĝ
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where

K =K (ϕ,B), G = G (ϕ,B), B = 2e
√︁

2
3 χgμν∇μϕ∇νϕ

(4)
• The fields are introduced through the following conformal

transformations gμν =
1
2e
−

√︁
2
3 χĝμν, φ ≡ fβ. 3/19



Cosmological Behaviour

• For this we consider a flat Friedmann-Robertson-Walker (FRW)
metric

ds2 = −dt2 + a(t)2δijdxidxj, (5)

• Including the matter part, the metric field equations now
become

Eμν =
1

2
Tμν, (6)

with Tμν =
−2p
−g

δSm
δgμν →perfect fluid.

• Friedmann equations can be written as

H2 =
1

3
(ρDE + ρm) (7)

2Ḣ+ 3H2 = −(pDE + pm) (8)
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•With the effective dark energy and pressure defined as

ρDE ≡
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→ The effective dark-energy equation of motion is given by

ρ̇DE + 3H(ρDE + pDE) = 0, (11)

→with the dark-energy equation-of-state parameter given by:

wDE ≡
pDE
ρDE

. (12)
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Model I
• We need to consider specific ansatzes for the functions
K (ϕ,B) and G (ϕ,B)→K (ϕ,B) = ϕ

2 , G (ϕ,B) = 0
corresponds to the GR case.

•
K (ϕ,B) =

1

2
ϕ−

ζ

2
B and G (ϕ,B) = 0. (13)

ζ is a coupling constant [E. N. Saridakis, M. Tsoukalas, Phys. Rev. D 93 (2016)].
• The corresponding Friedmann equations read as
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= 0. (15)
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• The two scalar field equations become

χ̈ + 3Hχ̇ +
1

2
p
6
e−2

√︁
2
3 χϕ−

1

2
p
6
e−

√︁
2
3 χ

(︀
ϕ− ζϕ̇2

)︀
= 0, (16)

ζϕ̈+
1

3
ζϕ̇

(︁
9H−

p
6χ̇

)︁
−

1

4
e−

√︁
2
3 χ +

1

2
= 0. (17)

•The effective dark-energy energy density and pressure become
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Evolution of Hubble Parameter

• We consider matter sector to be dust→ set pm ≈ 0.

• We set z = −1+ a0/a with the current value of scale factor
being set a0 = 1.

• The behaviour of the Hubble parameter in ΛCDM cosmology is
given by

HΛCDM(z) = H0

√︁
Ωm0(1+ z)3 + 1− Ωm0 (20)

We set Ωm0 ≈ 0.31 and H0 ≈ 67.3km/s/Mpc.

• We set the initial conditions such that H(z→ zCMB) ≈ HΛCDM
while H(z→ 0) > HΛCDM(z→ 0). [S. Banerjee, M. Petronikolou, E. N.

Saridakis, arXiv:2209.02426]
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Evolution of wDE
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Figure: The effective dark-energy equation-of-state parameter wDE as a
function of the redshift, for Model I for ζ = −10 in H0 units.



Evolution of H(z)
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Figure: The normalized H(z)/(1+ z)3/2 as a function of redshift. 10/19



Results

• wDE < −1 mostly, thereby depicting phantom evolution which
implies faster expansion→ one of the theoretical requirements
that are capable of alleviating the H0 tension [S. F. Yan, et al., Phys.

Rev. D 10, 2020, L. Heisenberg, H. Villarrubia-Rojo and J. Zosso, arXiv:2201.11623].

• The present value of H0 depends on the model parameter ζ.

• For value of ζ around −10 (in units of H0), the present value of
the Hubble parameter is around H0 ≈ 74km/s/Mpc, which is
consistent with the direct measured value of the Hubble
parameter.

• Values of ζ higher or lower than this give higher or lower values
of H0 respectively.
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Model II
•

K (ϕ,B) =
1

2
ϕ and G (ϕ,B) = ξB, (21)

with ξ the corresponding coupling constant.
• The corresponding Friedmann equations read as
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• The two scalar field equations become
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•The effective dark-energy energy density and pressure become
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Evolution of wDE
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Figure: The effective dark-energy equation-of-state parameter wDE as a
function of the redshift, for Model II for ξ = −10 in units of H0.



Evolution of H(z)
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Figure: The normalized H(z)/(1+ z)3/2 as a function of redshift. 15/19



Results

• wDE < −1 mostly, thereby depicting phantom evolution which
implies faster expansion, thus serving as a mechanism for
Hubble tension alleviation.

• For value of ξ = −10, the present value of the Hubble
parameter is around H0 ≈ 74 km/s/Mpc, which is consistent
with the direct measured value of the Hubble parameter.

• Values of ξ higher or lower than this give higher or lower values
for H0 respectively.
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Cosmic Chromometer (CC) Data [R. Jimenez and A. Loeb, Astrophys. J. 573, 2002]
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Figure: Evolution of H(z) as function of redshift. Red dotted line: ΛCDM
model, orange dashed-dotted line: model I with ζ = −10 and black line:
Model II with ξ = −10 on top of the CC data points at 1σ confidence level.
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Summary

• We investigated the possibility of resolving the Hubble tension
using the new gravitational scalar tensor theories.

• We studied the cosmological behaviour of two specific models,
imposing as initial conditions at high redshifts the coincidence
of the behaviour of the Hubble function with that predicted by
ΛCDM cosmology.

• We showed that as time passes, the effect of bi-scalar
modifications become important and thus at low redshifts the
Hubble function acquires increased values in a controlled way
resulting to H0 ≈ 74km/s/Mpc for particular parameter choices.

• We further confronted our models with CC data at 1σ level
confidence and find they are viable and in agreement with the
observed data. 18/19



Thank you for your attention!!!
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