The effect of peculiar velocities on the deceleration parameters

Jessica Santiago
Department of Physics
Aristotle University of Thessaloniki

September 11, 2022

ARISTOTLE
UNIVERSITY
OF THESSALONIKI

The tilted cosmological model

Two families of observers: u^{a} represent observers following the Hubble flow and \tilde{u}^{a} represent real observers.

The dynamics of a congruence of observers

Given a congruence of observers with four-velocity u^{a}, we can define:

$$
\nabla_{b} u_{a}=\frac{1}{3} \Theta h_{a b}+\sigma_{a b}+\omega_{a b}-A_{a} u_{b}
$$

where $\Theta, \sigma_{a b}$ and $\omega_{a b}$ are the expansion, shear and vorticity, respectively. A^{a} is the congruence's four-acceleration and

$$
h_{a b}=g_{a b}+u_{a} u_{b}
$$

is the projection operator.

reference

ω_{μ}

vorticity

The dynamics of a congruence of observers

Clearly, a different congruence following the flow lines of \tilde{u}^{a} will measure different parameters:

$$
\begin{equation*}
\nabla_{b} \tilde{u}_{a}=\frac{1}{3} \tilde{\Theta} \tilde{h}_{a b}+\tilde{\sigma}_{a b}+\tilde{\omega}_{a b}-\tilde{A}_{a} \tilde{u}_{b} . \tag{1}
\end{equation*}
$$

Rewriting \tilde{u}_{a} in terms of u_{a} :

$$
\begin{equation*}
\tilde{u}_{a}=\tilde{\gamma}\left(u_{a}+\tilde{v}_{a}\right) \approx u_{a}+\tilde{v}_{a} \tag{2}
\end{equation*}
$$

Non-relativistic $\left(\tilde{v}^{2} \ll 1\right)$ relative motion effects:

$$
\begin{array}{rll}
\tilde{\Theta}=\Theta+\tilde{\vartheta} & \longrightarrow \quad \tilde{\Theta}^{\prime}=\dot{\Theta}+\tilde{\vartheta}^{\prime}, \quad\left(\tilde{\vartheta}=\tilde{\mathrm{D}}_{a} \tilde{v}^{a}\right) \\
\tilde{A}_{a}=A_{a}+v_{a}^{\prime}+\frac{1}{3} \Theta v_{a} & \longrightarrow \quad \tilde{A}_{a} \neq 0 \text { even if } A_{a}=0
\end{array}
$$

The Hubble observers

We can define the Hubble and deceleration parameters as:

$$
H(t)=\frac{\Theta}{3}, \quad \text { and } \quad q(t)=-\left(1+\frac{3 \dot{\Theta}}{\Theta^{2}}\right),
$$

In this way, the timelike deceleration parameters measured by the real (bulk-flow) observers is:

$$
\tilde{q}=-\left(1+\frac{3 \tilde{\Theta}^{\prime}}{\tilde{\Theta}^{2}}\right),
$$

Relative motion effects on q

The relation between q and \tilde{q} can be shown to be:

$$
\tilde{q}=q-\frac{\tilde{\vartheta^{\prime}}}{3 H^{2}}
$$

Where again $\tilde{\vartheta}=\tilde{\mathrm{D}}_{a} \tilde{v}^{a}$. Using linear perturbation theory (with $p=0$) *,

$$
\tilde{\vartheta}^{\prime}+2 H \tilde{\vartheta}=\frac{1}{3 H} \tilde{D}^{2} \tilde{\vartheta}-\frac{1}{3 a^{2}}\left(\frac{\tilde{\Delta}^{\prime}}{H}+\frac{\tilde{\mathcal{Z}}}{H}\right)
$$

Applying standard scalar harmonic decomposition ${ }^{1}$ and $\Omega \simeq 1$, we see that this difference is scale-dependent:

$$
\begin{aligned}
& \text { e-depenaent: } \\
& \tilde{q}_{(n)}^{ \pm}=q_{(n)} \pm \frac{1}{9}\left(\frac{\lambda_{H}}{\lambda_{n}}\right)^{2} \frac{\left|\tilde{\vartheta}_{(n)}\right|}{H} .
\end{aligned}
$$

For $\lambda_{n}=a / n \rightarrow \lambda_{H}=1 / H$, we have $\tilde{q} \rightarrow q$, while well inside the Hubble horizon the perturbation term can play an important role.

$$
{ }^{1} \tilde{\vartheta}=\sum_{n} \tilde{\vartheta}_{(n)} Q^{(n)}, \text { with } \tilde{D}_{a} \tilde{\vartheta}_{(n)}=0 \text { and } Q^{(n) \prime}=0 \text { while } \tilde{D}^{2} Q^{(n)}=\equiv(n / a)^{2} Q^{(n \underline{\underline{\underline{I}}}} .
$$

Relative motion effects on q

Transition length

$$
\lambda_{T}=\sqrt{\frac{1}{9 q} \frac{|\tilde{\vartheta}|}{H}} \lambda_{H} .
$$

Using the above definition, we have

$$
\tilde{q}^{\mp}=q\left[1 \mp\left(\frac{\lambda_{T}}{\lambda_{n}}\right)^{2}\right]
$$

where the negative/positive sign corresponds to contracting/expanding bulk flows respectively.

$$
\tilde{q}^{\mp}=0.5\left[1 \mp\left(\frac{\lambda_{T}}{\lambda_{n}}\right)^{2}\right]
$$

Note that there is always a lower threshold below which our linear analysis no longer holds. Typically, this nonlinear cutoff is set around the 100 Mpc mark.

Relative motion effects on q

Unsing dimensional analysis:

$$
\tilde{\vartheta} \simeq \frac{\sqrt{3}\langle\tilde{v}\rangle}{\lambda_{n}}
$$

we have:

$$
\tilde{q}=0.5+\frac{\sqrt{3}}{9}\left(\frac{\lambda_{H}}{\lambda_{n}}\right)^{3}\langle\tilde{v}\rangle .
$$

Taking the null point of view

$E=-k_{a} u^{a}, \quad e_{a} u^{a}=0$

Taking the null point of view

For a photon travelling in an FLRW spacetime:

$$
\frac{d E}{d \lambda}=-E^{2} H
$$

Similarly now we have:

$$
\frac{\mathrm{d} E}{\mathrm{~d} \lambda}=-E^{2} \mathfrak{H}, \quad \mathfrak{H}(e)=\frac{1}{3} \Theta-A_{a} e^{a}+\sigma_{a b} e^{a} e^{b} .
$$

which gives us some physical intuition for defining the null expansion and null deceleration parameters as:

$$
\mathfrak{H} \equiv-\frac{1}{E^{2}} \frac{d E}{d \lambda} \quad \text { and } \quad \mathfrak{Q} \equiv-1-\frac{1}{E \mathfrak{H}^{2}} \frac{d \mathfrak{H}}{d \lambda}
$$

The null deceleration parameter

A multipole representation of $\mathfrak{Q}(e)$

$\mathfrak{Q}(e)=-1-\frac{1}{\mathfrak{H}^{2}(e)}\left(\stackrel{0}{\mathfrak{q}}+\stackrel{1}{\mathfrak{q}}_{a} e^{a}+\stackrel{2}{\mathfrak{q}}_{a b} e^{a} e^{b}+\stackrel{3}{\mathfrak{q}}_{a b c} e^{a} e^{b} e^{c}+\stackrel{4}{\mathfrak{q}}_{a b c d} e^{a} e^{b} e^{c} e^{d}\right)$
In the following, we will be focusing on the multipole component only, therefore giving us:
\mathfrak{Q} for tilted and Hubble observers

$$
\tilde{\mathfrak{Q}}=\tilde{q}-\frac{1}{3 H^{2}} \tilde{\mathrm{D}}^{a} \tilde{A}_{a} \quad \text { and } \quad \mathfrak{Q}=q-\frac{1}{3 H^{2}} \mathrm{D}^{a} A_{a}
$$

Relative motion effects on \mathfrak{Q}

Comparison between relative motion effects

$$
\tilde{q}=q+\frac{1}{9}\left(\frac{\lambda_{H}}{\lambda_{n}}\right)^{2} \frac{\tilde{\vartheta}}{H} \quad \text { vs. } \quad \tilde{\mathfrak{Q}}=\mathfrak{Q}+\frac{2}{9}\left(\frac{\lambda_{H}}{\lambda_{n}}\right)^{2} \frac{\tilde{\vartheta}}{H}
$$

Transition scales

$$
\lambda_{T}=\sqrt{\frac{1}{9 q} \frac{|\tilde{\vartheta}|}{H}} \lambda_{H}, \quad \text { vs. } \quad \lambda_{\mathcal{T}}=\sqrt{\frac{2}{9 \mathfrak{Q}} \frac{|\tilde{\vartheta}|}{H}} \lambda_{H}
$$

Survey	λ	$\langle\tilde{v}\rangle$	\tilde{q}^{-}	λ_{T}	$\tilde{\mathfrak{Q}}^{-}$	$\lambda_{\mathcal{T}}$
Nusser \& Davis	280	260	-0.01	282	-0.51	399
\quad Colin, et al	250	260	-0.24	304	-0.97	429
Scrimgeour, et al	200	240	-0.81	323	-2.11	457
Ma \& Pan	170	290	-2.05	384	-4.60	543

Conclusions

- Observers inside bulk flows can measure an apparent recent acceleration in the expansion rate only due to their peculiar motion;
- The local effect creates the illusion of a global acceleration.

For the null deceleration parameter:

- Qualitatively the effects due to peculiar velocities persist, quantitatively it is enhanced in the null case;
- The transition length is increased by a factor of $\sqrt{2}$.

Thank you for your attention

arXiv: 2203.01126

