The effect of peculiar velocities on the deceleration parameters

Jessica Santiago

Department of Physics Aristotle University of Thessaloniki

September 11, 2022

The tilted cosmological model

Two families of observers: u^a represent observers following the Hubble flow and \tilde{u}^a represent real observers.

The dynamics of a congruence of observers

Given a congruence of observers with four-velocity u^a , we can define:

$$\nabla_b u_a = \frac{1}{3} \Theta h_{ab} + \sigma_{ab} + \omega_{ab} - A_a u_b \,,$$

where Θ , σ_{ab} and ω_{ab} are the expansion, shear and vorticity, respectively. A^a is the congruence's four-acceleration and

$$h_{ab} = g_{ab} + u_a u_b$$

is the projection operator.

The dynamics of a congruence of observers

Clearly, a different congruence following the flow lines of \tilde{u}^a will measure different parameters:

$$\nabla_b \tilde{u}_a = \frac{1}{3} \tilde{\Theta} \tilde{h}_{ab} + \tilde{\sigma}_{ab} + \tilde{\omega}_{ab} - \tilde{A}_a \tilde{u}_b. \tag{1}$$

Rewriting \tilde{u}_a in terms of u_a :

$$\tilde{u}_a = \tilde{\gamma}(u_a + \tilde{v}_a) \approx u_a + \tilde{v}_a,$$
 (2)

Non-relativistic ($\tilde{v}^2 \ll 1$) relative motion effects:

$$\begin{split} \tilde{\Theta} &= \Theta + \tilde{\vartheta} &\longrightarrow \qquad \tilde{\Theta}' = \dot{\Theta} + \tilde{\vartheta}', \quad (\tilde{\vartheta} = \tilde{\mathsf{D}}_{\mathsf{a}} \tilde{v}^{\mathsf{a}}) \\ \tilde{A}_{\mathsf{a}} &= A_{\mathsf{a}} + v_{\mathsf{a}}' + \frac{1}{3} \Theta v_{\mathsf{a}} &\longrightarrow \qquad \tilde{A}_{\mathsf{a}} \neq 0 \;\; \text{even if} \;\; A_{\mathsf{a}} = 0 \end{split}$$

4 D > 4 B > 4 E > 4 E > E 990

The Hubble observers

We can define the Hubble and deceleration parameters as:

$$H(t)=rac{\varTheta}{3}, \;\; ext{ and } \;\; q(t)=-\left(1+rac{3\dot{\varTheta}}{\varTheta^2}
ight),$$

In this way, the timelike deceleration parameters measured by the real (bulk-flow) observers is:

$$ilde{q} = - \left(1 + rac{3 ilde{\Theta}'}{ ilde{\Theta}^2}
ight),$$

$$\tilde{q} = q - \frac{\tilde{\vartheta}'}{3H^2}.$$

Where again $\tilde{\vartheta}=\tilde{\mathsf{D}}_{a}\tilde{v}^{a}.$ Using linear perturbation theory (with p=0) *,

$$\tilde{\vartheta}' + 2H\tilde{\vartheta} = \frac{1}{3H}\tilde{\mathsf{D}}^2\tilde{\vartheta} - \frac{1}{3a^2}\left(\frac{\tilde{\Delta}'}{H} + \frac{\tilde{\mathcal{Z}}}{H}\right).$$

Applying standard scalar harmonic decomposition ¹ and $\Omega \simeq 1$, we see that this difference is scale-dependent:

$$\tilde{q}_{(n)}^{\pm} = q_{(n)} \pm \frac{1}{9} \left(\frac{\lambda_H}{\lambda_n}\right)^2 \frac{|\tilde{\vartheta}_{(n)}|}{H}.$$

For $\lambda_n=a/n\to\lambda_H=1/H$, we have $\tilde{q}\to q$, while well inside the Hubble horizon the perturbation term can play an important role.

 $[\]tilde{V} = \sum_n \tilde{\mathcal{V}}_{(n)} Q^{(n)}$, with $\tilde{D}_a \tilde{\mathcal{V}}_{(n)} = 0$ and $Q^{(n)} = 0$ while $\tilde{D}^2 Q^{(n)} = \frac{1}{2} (n/a)^2 Q^{(n)} = \frac{1}{2} (n/$

Relative motion effects on q

Transition length

$$\lambda_T = \sqrt{\frac{1}{9q} \frac{|\tilde{\vartheta}|}{H} \lambda_H}.$$

Using the above definition, we have

$$\tilde{q}^{\mp} = q \left[1 \mp \left(\frac{\lambda_T}{\lambda_n} \right)^2 \right] ,$$

where the negative/positive sign corresponds to contracting/expanding bulk flows respectively.

$$\tilde{q}^{\mp} = 0.5 \left[1 \mp \left(\frac{\lambda_T}{\lambda_n} \right)^2 \right] ,$$

Note that there is always a lower threshold below which our linear analysis no longer holds. Typically, this nonlinear cutoff is set around the 100 Mpg mark. 8/15

Relative motion effects on q

Unsing dimensional analysis:

$$\tilde{\vartheta} \simeq \frac{\sqrt{3} \langle \tilde{v} \rangle}{\lambda_n},$$

we have:

$$\widetilde{q} = 0.5 + rac{\sqrt{3}}{9} \left(rac{\lambda_H}{\lambda_n}
ight)^3 \left\langle \widetilde{v}
ight
angle.$$

Survey	λ	$\langle \tilde{v} \rangle$	$ ilde{q}^{(+)}$	$\tilde{q}^{(-)}$	λ_T	
Nusser & Davis	280	260	+1.01	-0.01	282	
Colin, et al	250	260	+1.24	-0.24	304	
Scrimgeour, et al	200	240	+1.81	-0.81	323	
Ma & Pan	170	290	+3.05	-2.05	384	
Turnbull, et al	140	250	+4.58	-3.58	400	
Feldman, et al	140	410	+7.08	-6.08	508	_ /

Taking the null point of view

$$E = -k_a u^a$$
, $e_a u^a = 0$

For a photon travelling in an FLRW spacetime:

$$\frac{dE}{d\lambda} = -E^2H,$$

Similarly now we have:

$$rac{\mathrm{d}E}{\mathrm{d}\lambda} = -E^2\mathfrak{H} \; , \qquad \mathfrak{H}(e) = rac{1}{3}\,\Theta - A_a e^a + \sigma_{ab} e^a e^b \, .$$

which gives us some physical intuition for defining the *null expansion* and *null deceleration* parameters as:

$$\mathfrak{H} \equiv -\frac{1}{F^2} \frac{dE}{d\lambda}$$

and

$$\mathfrak{Q} \equiv -1 - \frac{1}{F\mathfrak{H}^2} \frac{d\mathfrak{H}}{d\lambda},$$

Asta Heinesen JCAP05(2021)008

The null deceleration parameter

A multipole representation of $\mathfrak{Q}(e)$

$$\mathfrak{Q}(e) = -1 - \frac{1}{\mathfrak{H}^2(e)} \left(\overset{0}{\mathfrak{q}} + \overset{1}{\mathfrak{q}}_{a} e^a + \overset{2}{\mathfrak{q}}_{ab} e^a e^b + \overset{3}{\mathfrak{q}}_{abc} e^a e^b e^c + \overset{4}{\mathfrak{q}}_{abcd} e^a e^b e^c e^d \right)$$

In the following, we will be focusing on the multipole component only, therefore giving us:

O for tilted and Hubble observers

$$\tilde{\mathfrak{Q}} = \tilde{q} - \frac{1}{3H^2} \tilde{\mathrm{D}}^a \tilde{A}_a$$
 and $\mathfrak{Q} = q - \frac{1}{3H^2} \mathrm{D}^a A_a$

4□ > 4□ > 4□ > 4□ > 4□ >

Relative motion effects on Q

Comparison between relative motion effects

$$\tilde{q} = q + rac{1}{9} \left(rac{\lambda_H}{\lambda_D}
ight)^2 rac{ ilde{artheta}}{H} \quad ext{vs.} \quad ilde{\mathfrak{Q}} = \mathfrak{Q} + rac{2}{9} \left(rac{\lambda_H}{\lambda_D}
ight)^2 rac{ ilde{artheta}}{H}$$

Transition scales

$$\lambda_T = \sqrt{rac{1}{9q} rac{|\tilde{\vartheta}|}{H}} \, \lambda_H \,, \quad \text{vs.} \quad \lambda_T = \sqrt{rac{2}{9\mathfrak{Q}} rac{|\tilde{\vartheta}|}{H}} \, \lambda_H \,,$$

Survey	λ	$\langle ilde{ ilde{ u}} angle$	$ ilde{q}^-$	λ_T	$\tilde{\mathfrak{Q}}^-$	$\lambda_{\mathcal{T}}$
Nusser & Davis	280	260	-0.01	282	-0.51	399
$\operatorname{Colin},\operatorname{et}\operatorname{al}$	250	260	-0.24	304	-0.97	429
Scrimgeour, et al	200	240	-0.81	323	-2.11	457
Ma & Pan	170	290	-2.05	384	-4.60	543

Conclusions

- Observers inside bulk flows can measure an apparent recent acceleration in the expansion rate only due to their peculiar motion;
- The *local* effect creates the *illusion* of a global acceleration.

For the null deceleration parameter:

- Qualitatively the effects due to peculiar velocities persist, quantitatively it is enhanced in the null case;
- The transition length is increased by a factor of $\sqrt{2}$.

Thank you for your attention

arXiv: 2203.01126