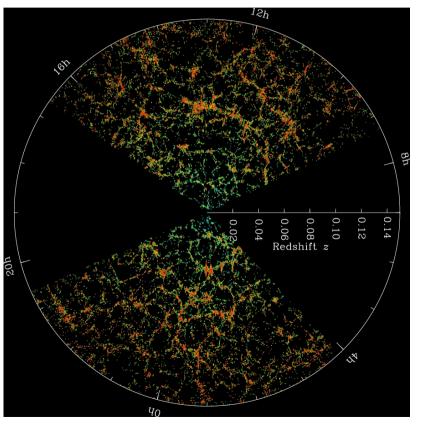

Tensions and anomalies: how well do we understand subtle dependencies of galaxy clustering on their properties?

Corfu, 11.09.2022

Agnieszka Pollo UJ & NCBJ Poland

Unnikrishnan Sureshkumar Krzysztof Lisiecki Gosia Siudek Kasia Malek Sebastian Turner Janusz Krywult more students & collaborators **VIPERS** team GAMA team



Credit: Planck collaboration

DM (and DE), new physics or whatever is behind → baryonic matter is a tracer (moreover, only selected pieces of of baryonic matter)

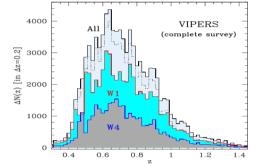
 \rightarrow reconstruction as good as our understanding of biases of baryonic tracers

different galaxies - different structure

→ How many different types of galaxies there are and how differently are they tracing LSS?

→ What is the imprint on the galaxy clustering measurements (and derived quantities)?

Credit: SDSS

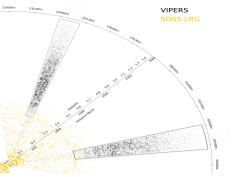


SURVEY STATUS AS OF 06/11/2016

EFFECTIVE TARGETS	MEASURED REDSHIFTS	STELLAR CONTAMINATION	COVERED
93252	88901	2265 (2.5 %)	100.0 %

EFFECTIVE TARGETS (ET) are all the primary targeted objects with the exclusion of the ones flagged as -10 (undetected). WEASURED REDSHIFTS (MR) are the fraction of ET for which a redshift has been measured. STELLAR CONTAMINATION are he MR objects which have been identified as stars.

Large ESO Programme, 2008-2016

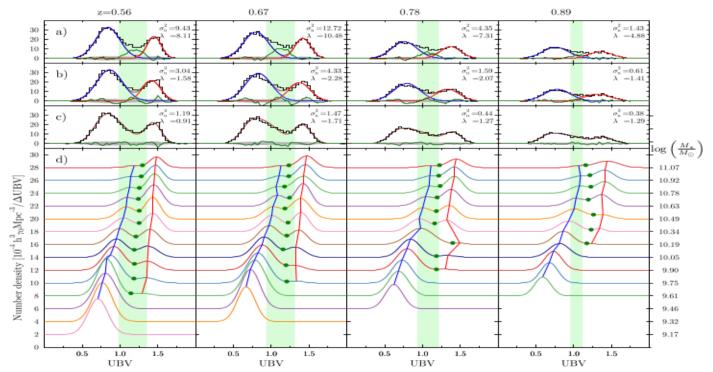

~90 000 spectra of galaxies at 0.5<z≤1.2 2 fields on the sky, 24 deg^2

VLT-VIMOS: 325 spectra at once

25/09/02

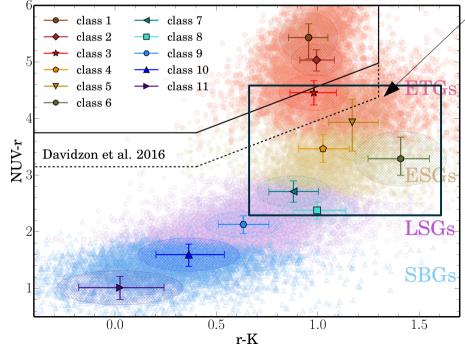
Guzzo et al. 2014, 2017, Scodeggio et al. 2018

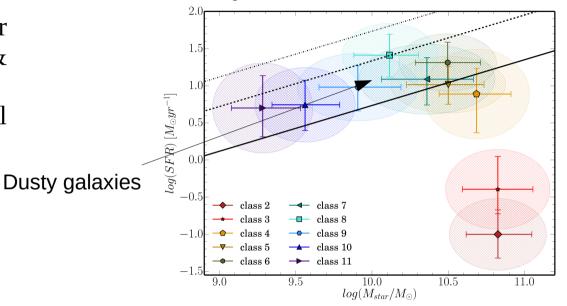
Courtesy Ben Granett


- VIPERS: ~90,000 spectroscopically measured galaxies at 0.5<z<1.2 in 2 fields of 24 deg^2
- Galaxy colour (and not only) distribution: slight deviations from bi-Gaussianin large redshift and mass bins in the "green" area between red and blue populations seem to be rather an effect of mass-andredshift dependence of otherwise perfectly bi-Gaussian distributions.

http://vipers.inaf.it/rel-pdr2.html

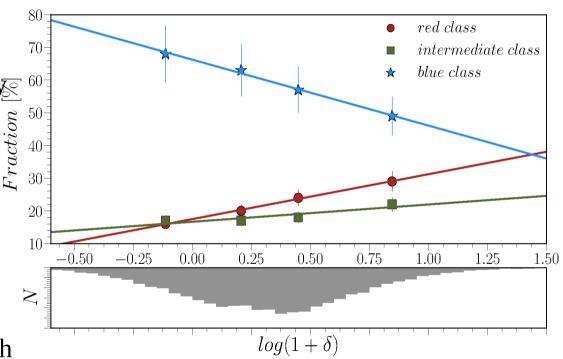
How many galaxy populations are there?


Perfect (moving) bimodality?


Krywult et al. in prep.

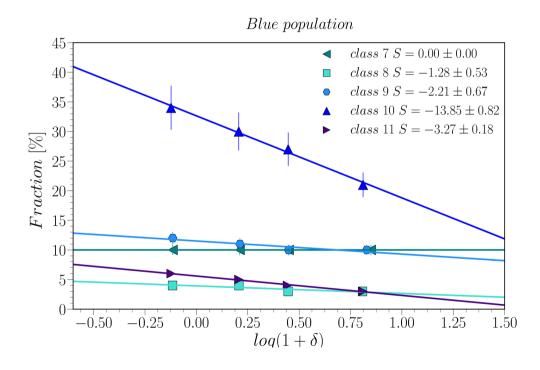
- Method: unsupervised FEM Fisher Expectation-Maximization (Bouveyron & Brunet 2011);
- Parameter space: of 12 rest-frame optical magnitudes and a spectroscopic redshift

How many galaxy populations can be blindly selected at z~1?


11 *well separated* classes of galaxies at 0.5 < z < 1, forming the sequence of: 3, 3, and 5 subclasses of early, intermediate and late types, respectively. Moreover, all these classes but one (dusty intermediate class dominated by NL AGNs) can be well recovered at $z \sim 0$ in the SDSS.

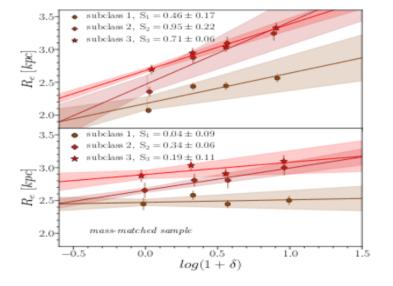
Siudek et al. 2018, Turner et al. 2021

Does this 11 class division reflect actual physical information?


- Traces of different galaxy evolutionary \mathbb{E}^{60} paths seen in multi-color space? \mathbb{E}^{50}
- See what happens when quantities not $\frac{\delta}{2}$ related to classification are introduced
- Environment: environmental dependence → biases and differences in how galaxies trace LSS
- Global tendency at z~1 consistent with local: red galaxies are most aboundant in the dense environments, blue ones dominate the field → downsizing and mass-driven evolution

Siudek et al. 2022 density field: Cucciati et al. 2014

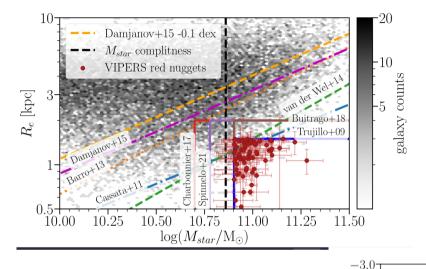
Looking into details: blue


Siudek et al. 2022

 \rightarrow Blue galaxies at z~1: not all follow the downsizing trend!

→ For blue galaxy populations: the downsizing trend is mostly driven by only one (admittedly, the largest) subpopulation (and in this case it it consistent with massdriven passive evolution) \rightarrow the fractions of other blue SF

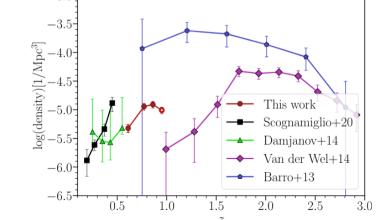
→ the fractions of other blue SF galaxies are much less mass/environment-dependent – environmental effects play a role in keeping them blue

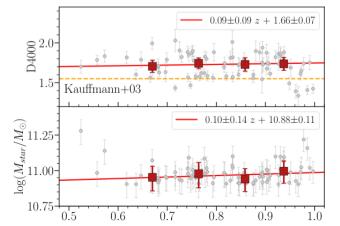


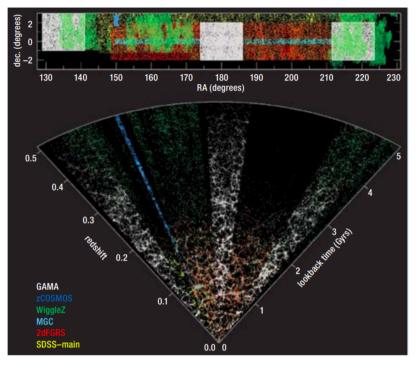
Looking into details: red

...the reddest red class: \rightarrow the smallest in size \rightarrow size does not depend on environment (independently on stellar mass): may be a product of early fast quenching (while the other two might have grown also through mergers)

Siudek et al. 2022; morphology: Krywult et al. 2018

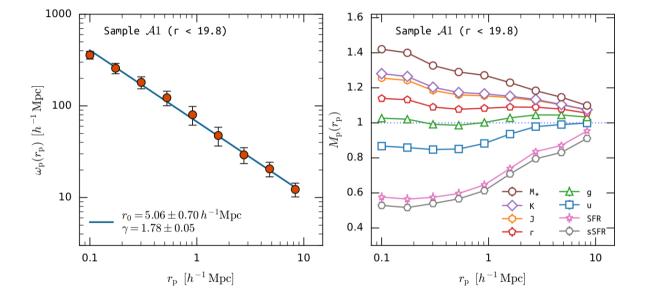





→ mass complete catalog of 77 "red nuggets" at z~0.7
→ filling the gap between high z "red nuggets" and low-z "relics"
→ on the way to new sample of galaxies with well controlled passive evolution histories?

Lisiecki et al. 2022

Driver et al. 2009

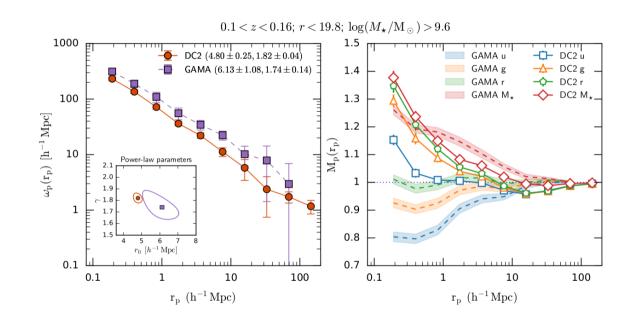


Unnikrishnan Sureshkumar

₹ ₹ Galaxy and Mass Assembly Survey \rightarrow Galaxy clustering vs galaxy properties \rightarrow Method: marked correlation function (Skibba, Sheth et al. 2006, 2009, 2013) \rightarrow concept: in order to see how a given galaxy property correlates with environment and on which scale, we use this property as a weight ("mark") \rightarrow M = $\xi_marked(r)/\xi(r)$ \rightarrow applied at 0.1<z<0.16, volume limited sample(s)

From ξ to mass-SFR-luminosity marked ξ

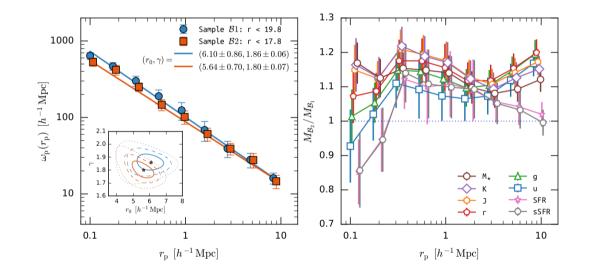
Sureshkumar et al. 2021


 \rightarrow Different properties differently mark LSS at small scales

 \rightarrow the strongest overdensity traces is the stellar mass, the weakest sSFR, luminosities from red to blue form a hierarchy in between

→ monotonously steepening galaxy spectral slope when moving to small scales (dense environments)

Not reproducible by simulations (yet)



Sureshkumar et al. in prep.

 \rightarrow Comparison with "mock GAMA" built from DC2 (DESC LSST's official simulations, galaxy modeled by UniverseMachine, Behroozi et al. 2019) \rightarrow similar hierarchy but environmental dependencies not quite the same (galaxies much less diverse than in the real data and no negative trend with a blue band u) \rightarrow need to be careful interpreting small scale clustering with the aid of simulations

Mass is not light, light is not mass: effect of flux limit on mass selected sample for ξ and M

→ (unavoidable) flux limit
 affects completeness of
 volume limited catalogs
 → between GAMA and SDSS
 flux limit:

- marginal effect on $\xi(r)$ itself \rightarrow but: enhanced
- dependencies of MCF on galaxy properties – brighter galaxies at the same mass mark the small scale structure more strongly

Sureshkumar et al. 2021

Summary

- Different evolutionary paths of different galaxies depend (also) on their environments \rightarrow superficially similar galaxies may have quite different histories, and quite different relations with environment
- ...which implies they trace the LSS differently
- small scale dependence of clustering on galaxy properties on environment monotonic change of average galaxy properties with scale instead of bi/multimodality
- ...(not surprisingly) not reproduced by simulations
- flux incompleteness affects mass completeness which is visible in the MCF