

Cooling of Rare Isotope Beams in the ESR Storage Ring

M. Steck Storage Rings / GSI ACC

Injector Chain of the ESR

ESR Operational Modes

Fast injection (ions and TE/FRS RIBs) Stochastic cooling (400 MeV/u) Electron cooling (4 - 400 MeV/u) Laser cooling (C³⁺ 120 MeV/u) Internal gas jet target **Deceleration (down to 4 MeV/u) Fast extraction (HITRAP/CRYRING)** Ultraslow extraction (charge change) **Beam accumulation** Isochronous mode (Schottky detector) Schottky mass spectrometry of RIBs Slow (resonant) extraction

Cooling Systems of the ESR

GSI Helmholtzzentrum für Schwerionenforschung GmbH

M. Steck, COOL 23, Montreux, Switzerland, 8th – 13th October 2023

Schottky Mass Spectrometry 🕞 📻 🏦

Injection of cocktail rare isotope beam from fragment separator FRS Cooling (stochastic pre-cooling + final electron cooling) Achieved momentum spread ($\delta p/p = 5 \times 10^{-7}$, $\delta f/f = 2 \times 10^{-7}$)

GSI Helmholtzzentrum für Schwerionenforschung GmbH

M. Steck, COOL 23, Montreux, Switzerland, 8th – 13th October 2023

Tracing of Single Ions

detection of single ions with resonant cavity 124th harmonic

typical cooling time: 3-5 seconds

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Preparation of RI Beam

isotopes are produced in a target in front of the ESR, selection is performed in the ESR

Broad isotope cocktail beam is cooled. Isotopes are separated and can be removed selectively ⇒ purification resulting in a single- or few-component beam (low intensity beams after electron cooling have sub-millimeter size)

in 2022 first demonstration of first laser spectroscopy of a stored radioactive ²⁰⁸Bi⁸²⁺ beam produced from a primary ²⁰⁹Bi beam typical beam intensity $1-2\times10^{5}$ ²⁰⁸Bi⁸²⁺ stored ions (single injection) precise determination of electron energy by high voltage divider (\Rightarrow ion beam velocity) overlap laser–ion beam is adjusted by scrapers

GSI Helmholtzzentrum für Schwerionenforschung GmbH

M. Steck, COOL 23, Montreux, Switzerland, 8th – 13th October 2023

for many experiments the intensity of a single injection of rare isotopes is inadequate \Rightarrow need for beam accumulation

traditional beam accumulation at 400 MeV/u requires both stochastic and electron cooling

practical time for beam accumulation depends on the lifetime of the ion

Accumulation of Rare Isotope Beams by Barrier Buckets

originally proposed for the NESR storage ring of the FAIR project basic idea: confine stored beam to a fraction of the circumference, inject into gap apply strong electron cooling to merge the two beam components

 \Rightarrow fast increase of intensity (for low intensity RIBs)

Proposal of Beam Accumulation (D. Möhl 2006)

A stacking scheme for the NESR using the h=1 RF

(Draft 21.6.06)

Dieter Möhl

1. Introduction

We consider a scheme based on the normal h = 1 RF-system, to stack (or top up) the RI beam in NESR. It proceeds in the following steps:

- i) The h=1 voltage is adiabatically raised, to concentrate the stack in an inner trajectory extending over a small fraction of the circumference (Fig. 1). The bunching is assisted by electron cooling.
- ii) A new batch is injected onto the free part of the circumference.
- iii) The RF is decreased and electron cooling reduces the energy spread and 'merges' batch and the stack.

In a simplified version, the h=1 voltage is 'on' continuously and the bunching and merging (step ii)) is merely done by cooling ("cooling into the bucket")

Fig. 1: Sketch of the stationary h=1 bucket, its inner trajectory covering 10% of the circumference containing the stack, and kicker waveform to inject the new batch at 740 MeV/u.

Intensities (number of U92+ ions) for a tolerable tune shift of 0.1 in a few situations are compiled in table 4. Obviously the tune shift is largest just after bunch

Energy	740 MeV/u	100 MeV/u
2σ emittance (h≈v) at injection $(2\sigma)^2/\beta_c$ (m rad)	0.5 10 ⁻⁶	1.6 10 ⁻⁶
U92+ space charge limit (N) (for 22 m bunch, $\Delta Q=0.1$)	7.5 10 ⁸	1.5 108
2σ emittance (h=v) after cooling $(2\sigma)^2/\beta_c$ (m rad)	0.1 10 ⁻⁶	0.1 10 ⁻⁶
U92+ space charge limit (N) (for 22 m bunch, $\Delta Q=0.1$)	1.5 10 ⁸	0.13 10 ⁸

Table 4: Transverse space charge limits at injection and after cooling to small emittance

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Test of Stacking with h=1 at Unstable Fixed Point (2012)

40

FAIR Bunch to Bucket (B2B) Synchronization System

tested at the ESR in 2021, now routinely operational in user beam time

bunch after injection into the ESR

D. Beck, D. Lens, O. Chorniy

dipole oscillations of the bunch \rightarrow

perfect match of rf phases (SIS-ESR),
injected bunch is captured in ESR rf bucket

 $\leftarrow \text{full mismatch of rf phases}$

M. Steck, COOL 23, Montreux, Switzerland, 8th – 13th October 2023

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Realization of h=1 Beam Accumulation with New Bunch to Bucket System

 $\frac{^{208}\text{Pb}^{82+}\text{ 270 MeV/u}}{N_{max}} \sim 1.5 \times 10^8$

continuous electron cooling applied with electron current 0.3 A

ESR bunch measured with FCT

ESR kicker pulse length reduced from 560 to 200 ns in order not to excite the circulating ESR bunch

Beam Accumulation at h=1 with New Bunch to Bucket System

high intensity from SIS ESR saturates around 1.3 ×10⁸ ions ESR peak bunch current 50 mA

particularly suited for the accumulation of secondary beams

GSI Helmholtzzentrum für Schwerionenforschung GmbH

reduced intensity from SIS \Rightarrow efficient accumulation in ESR

large flexibility: only 1 cooling system is required accumulation at any energy

ESR Barrier Bucket RF System

GSI Helmholtzzentrum für Schwerionenforschung GmbH

M. Steck, COOL 23, Montreux, Switzerland, 8th – 13th October 2023

Decelerated Rare Isotope Beams for Nuclear Astrophysics

supernova remnant x-ray binary

To investigate the origin of elements in stars, nuclear astrophysics aims for challenging reaction studies on $\frac{H_2}{target}$ rare ion beams. ¹²⁴Xe 35°

Heavy ion storage rings at GSI detectors provide unique possibilities and unrivalled conditions for such experiments.

dipole 125 50x50 mm² double-sided silicon strip det.

quadrupoles

90° 60°

X-ray

Experimental setup of the reaction study ¹²⁴Xe(p,γ) in the ESR at beam energies as low as 5.5 MeV/u.

high energy production & separation of radioactive beams in FRS

most efficient and versatile technique available

- deceleration to energies below 10 MeV/u
 - access to the famous Gamow window relevant for nuclear physics of stars
- cooled beam in combination with a thin gas jet target
 - inverse kinematics studies at unmatched energy resolution
- storage and recycling of the rare ion beam
 - extremely efficient technique for studies on beams of limited intensity

Jan Glorius

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Typical ESR Deceleration Cycle

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Deceleration Cycle 2022

electron cooling is applied at all three plateaus

For intensity below 10⁷ particle loss is less than 20 % from 145 to 10 MeV/u, but for higher initial intensity increasing relative losses were observed

fast losses at 10 MeV/u beam lifetime due to vacuum

11:17:10

11:17:20

[Time]

11:17:00

11:16:50

Efficiency of Deceleration 2020 $\mathbf{E} = \mathbf{I}$

deceleration cycle Bi⁸³⁺ from 400 to 30 MeV/u

GSI Helmholtzzentrum für Schwerionenforschung GmbH

1.2E+07 1.0E+07 particle number 8.0E+06 6.0E+06 4.0E+06 final 2.0E+06 0.0E+00 0.0E+00 1.0E+07 2.0E+07 3.0E+07 4.0E+07 5.0E+07 6.0E+07 initial particle number

Deceleration Efficiency 2021/22

the beam loss during deceleration depends on:

- the initial emittance
- the change of momentum during deceleration

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Deceleration for HITRAP 2022

GSI Helmholtzzentrum für Schwerionenforschung GmbH

M. Steck, COOL 23, Montreux, Switzerland, 8th – 13th October 2023

ACC OPERATIONS

Slow Response of the Cooler High Voltage System after Ramping to Low Energy

- the high voltage load results in a time constant of ~ 10 s, which determines the response to ramping of the high voltage
- the high voltage power supply has an internal regulation time of about 5 s
- both time constants affect the time required for cooling after deceleration
- beam lifetime at low energy is determined by the poor vacuum conditions of the ESR

tests to reduce the delay by fast ramping of the HV or application of a special HV pattern to the drift tube are foreseen in 2024

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Experiment with Decelerated ¹¹⁸Te⁵²⁺

Experimental procedure:

- 1) injection of beam at 400 MeV/u on outer ESR orbit ($\Delta p/p = +0.8\%$)
- 2) stochastic cooling on injection orbit (~6 s)
- 3) rf deceleration to inner orbit ($\Delta p/p = -0.8\%$)
- 4) electron cooling on inner orbit (~6 s)
- repetition of 1) 4) \Rightarrow accumulation
- 5) ramping of magnetic field to center beam ($\Delta p/p=0$)
- 6) deceleration to 30 MeV/u
- 7) electron cooling and de-/rebunching h=2 \rightarrow 4
- 8) deceleration to final energy (7 and 6 MeV/u)
- 9) electron cooling and operation of internal gas (H₂) jet target

Iongitudinal Schottky signal after injection of pre-separated beam from FRS

deceleration efficiency 400 to 7 MeV/u about 50 %

```
beam lifetime at 7 MeV/u: 1.5 s with electron cooling and H_2 target
```


Proof of Selectivity

measurement of the X-ray spectrum of the decelerated ion beam interacting with the internal gas (H_2) jet target

 \Rightarrow no indication of contamination,

all X-ray line can be attributed to transitions of Te⁵²⁺

http://arxiv.org/abs/2305.17142

GSI Helmholtzzentrum für Schwerionenforschung GmbH

M. Steck, COOL 23, Montreux, Switzerland, 8th – 13th October 2023

Future Scenario with Rare Isotope Beams ACC PERATIONS prepared in the ESR

experiments with stored highly charges RIBs at higher energy will be continued

- mass spectrometry of rare isotopes
- precision spectroscopy of rare isotopes

further optimization of deceleration of rare isotopes will allow

- experiments with increased intensities of stored rare isotopes
- delivery of 4 MeV/u RI beam for further deceleration in the HITRAP linac and final capture in a trap
- delivery of low energy rare RI beam to CRYRING@ESR for further deceleration

Beam cooling is indispensable

in all experiments with rare isotope beams

Thanks to

R. Heß, R. Joseph, S. Litvinov, B. Lorentz,

C. Peschke, U. Popp, J. Roßbach

and to all technical departments of GSI/FAIR