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Introduction to LEReC
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High power dump

* LEReC was designed to cool colliding gold ions @ y = 4.9 and @ y = 4.1 and was successfully operated in
2020-2021 low energy RHIC run routinely providing a substantial luminosity increase.

* In LEReC e-bunches are produced at the photo-cathode illuminated by a green 704 MHz laser modulated with
the 9 MHz frequency to match the frequency of RHIC ion bunches.

* The Electrons are accelerated to 375 keV in the DC gun followed by a 704 MHz SRF cavity bringing the beam
energy to either 1.6 or 2. MeV.

* Next, the e-beam is transported to the cooling section (CS) in the “Yellow” RHIC ring and to the cooling
section in the “Blue” RHIC ring.

* Finally, the electron beam is extracted at the exit of the blue CS through the extraction dogleg and sent to the
beam dump.



Unique features of LEReC
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 LEReC s applied directly to the ions in the collider at top energy
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LEReC operational experience

* Electron cooling effectively counteracted emittance and bunch length growth due to the
Intra-beam scattering. In addition, transverse cooling was optimized to further reduce the

ion beam sizes.
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Challenges during RHIC operations

* Loss on recombination: Without continuous longitudinal magnetic field in the
cooling section and small temperatures of electron beam, loss of ions due to
radiative recombination was noticeable (in typical low-energy coolers magnetic
field allows to suppress recombination loss with large transverse temperatures).
This could partially be mitigated by introducing a small average velocity offset
between electrons and ions.

e Lifetime of ions: ions lifetime suffered due to the presence of electron beam,
this was especially true for working point close to an integer. This was the
dominant limiting factor requiring operation at reduced electron currents -
strongest cooling did not necessarily lead to highest luminosity.

* Additional diffusion mechanism from electrons: There was an additional
growth of transverse beam size of ions caused by electrons (which we called
heating”). Such a heating was counteracted by cooling and was not a limiting
factor for performance.



Cooling in LEReC =
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Electron-ion heating

* In the presence of e-beam and with the “zeroed” cooling we observe a much faster growth of the
transverse size of the i-bunch than the IBS driven size growth.

* We call this additional growth of the emittance “the electron-ion heating”
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Measurement procedure

* We perform the studies with the low intensity ion bunches in one ring only

* We always precool the i-bunches to approximately the same transverse and longitudinal
Size

* Next, we “switch off” the cooling by detuning the e-beam energy by 5-6 kV

* |n a heating measurement for given parameters we record the evolution of the ion
bunches transverse and longitudinal sizes and the intensity of the ion bunches

* Measurement-to-measurement we vary the charge of electron bunches, and/or the
settings of the cooling section solenoids.

* For each electron bunch charge used in the heating measurements we fully characterize
the longitudinal and the transverse phase space of the electron bunch at the entrance
to the cooling section in dedicated measurements.

* We perform several control measurements of the IBS-driven size growth of the i-
bunches throughout each shift. The i-bunch parameters in these measurements cover
the whole parameters’ range used in the heating measurements



Example of data processing
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Heating process invariant
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Typical e-bunch measurement
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lon-electron focusing
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Typical measurement result for a constant e-beam current

* This measurement was performed with electron bunch charge of 62 pC (I, = 20 mA)

* The average electron bunch density in the cooling section was varied by adjusting the CS
solenoids (in the range of 3A-9A)

* In this measurement the “initial conditions” for the e-bunch at the entrance to the cooling
section stayed unchanged. 0.030
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Combining all datapoints

normalized heating rate vs. charge density
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Comparison to models

* We applied several theories to the observed data, but none of them predict
experimentally observed dependence:

A simple “random walk model” with either dipole or

focusing kicks.

In a more sophisticated model the focusing kicks
from the space charge of e-bunches drive synchro-
betatron resonances and the heating effect occurs
due to the longitudinal IBS continuously “dragging”
individual ions through the resonance conditions.

The red dashed line shows the model’s prediction

for the heating rate on the average e-beam density.

The simulations are based on a one-turn map and
a thin lens treatment of the electron-ion
interaction, and include the cooling force, intra-
beam scattering, ion-electron focusing and
electron-ion focusing kick.
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Can energy offset cause transverse heating?
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* To check whether we “create” transverse heating
by offsetting beam energy we performed
measurements with chirped e-bunch.
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S. Seletskiy, A. Fedotov, and D. Kayran, Experimental studies of
circular attractors in the first ri-based electron cooler, Phys. Rev.
Accel. Beams 26, 024401 (2023).

We compared the heating measured for the e-beam with
energy offset and the beam with the chirp, large enough to
produce a similar cooling force suppression




Chirp vs. offset

* The offset-driven size growth rate is ~1.5 times larger than the chirp-driven

one.
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Next steps

* Continue the studies with a chirped e-bunch
* Perform measurements with several bunch charges and various bunch
densities

* Study the heating effect “switching off” the cooling by introducing
additional angles

* One of the possibilities is to create a zig-zag electron trajectory in the cooling
Section beam trajectory in Yellow CS I Y[

,,,,,,,,,,,,,,,,, .| x704 MHz BPMs “see” the e-beam only
"‘ i : X 9 MHz BPMs see both beams

mm
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summary

* In presence of electron beam in the cooling section of the RHIC electron
cooler (and in the absence of cooling) we observe a noticeable transverse
heating of the ion bunches - a much faster growth of the transverse size of
the i-bunch than the IBS driven size growth.

* The optimized electron cooling overcomes both the heating and the IBS.
The e-i heating was not a limiting factor for RHIC operations with the
cooler.

* Dedicated studies of the electron-ion heating showed that the heating rate
grows linearly with the average density of electron bunches.

* It was found that the extra-heating “created” by energy-offset is a
substantial part of the overall emittance growth.

* Further studies are planned.
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Operational cooling and gain in luminosity

An example of operational cooling in both
RHIC rings during one store (compared to Integrated luminosity was
the store without cooling) increased by a factor of ~2
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lon—electron focusing in LEReC cooling section

180° bend solenoids combined with correctors
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Fitting IBS-driven growth rate

* Dedicated IBS measurements were taken each shift. The fitting was performed for each
measurement. The results were consistent shift-to-shift and measurement-to-measurement.

* We were looking for the fitting formula of the form: A,Bs(ay) =C -
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