

Laser cooling of bunched O⁵⁺ ion beams at the CSRe: Coherent effect and Extraction of momentum distribution

Hanbing Wang 2023.10.10

Institute of Modern Physics, Chinese Academy of Sciences

COOL2023 @ Montreux, Switzerland

Motivation: Crystalline ion beams

T. Schaetz et al., Nature 412, 717(2001)

U. Schramm, et al., Progress in Particle 53 (2004) 583

Motivation: Laser spectroscopy @ relativistic energy

Advantages of laser cooling :

- Fast cooling speed
- Strong cooling force: increases with beam energy $\propto \gamma^2$
- Laser cooling of relativistic ions
- Access to ground state transitions of heavy ions by huge Doppler shift
 - Precision laser spectroscopy of HCIs

Laser cooling and precision laser spectroscopy @storage rings

Principle: Laser cooling @ storage rings

Experimental setup & parameters

	CSRe parameters	
	Circumference	128.80 m
	Max. magnetic rigidity $B\rho$	9.4 Tm
	Ion species	$^{16}O^{5+}$
	Beam energy E	275.7 MeV/u
	Relativistic β , γ	0.636, 1.296
	Revolution frequency	1.48 MHz
	Transition energy γ_{t}	2.629
	Splitting factor η	0.45
	Beam lifetime	\sim 35 s
	Transition $2s_{1/2} - 2p_{1/2}$	103.76 nm
	Resonance energy	11.95 eV
	Lifetime of spontaneous emission $ au$	2.44 ns
CW laser system		
	Laser wavelength	220 nm
	Laser power	40 mW
	Scanning range	20 GHz

Schottky system @ HIRFL-CSRe

Resonant Schottky pick-up

Experimental results @ laser cooling of O⁵⁺ ion beams

Laser cooling of bunched ¹⁶O⁵⁺ ion beams

Laser cooling by CW laser and E-cooler

Simulation method: phase space tracking

The motion of ions in the phase space

The motion of bunched ions in the longitudinal phase space

The trajectory of bunched ions under fixed laser in the longitudinal phase space

Simulation method

Laser interaction

Before absorption

After absorption

After emission

RF-buncher modulation

$$\begin{cases} \dot{\delta} = \frac{\omega_0}{2\pi\beta^2 E} eV(\sin\phi - \sin\phi_s) \\ \dot{\phi} = h\omega_0\eta\delta \end{cases}$$

6-D motion in storage rings

$$\begin{pmatrix} x_2 \\ x_2' \\ y_2 \\ y_2' \\ \delta s_2 \\ \delta s_2 \\ \delta s_2 \\ \delta s_2 \\ p_2 \end{pmatrix} = \begin{bmatrix} R_{11} & R_{12} & 0 & 0 & 0 & R_{16} \\ R_{21} & R_{22} & 0 & 0 & 0 & R_{26} \\ 0 & 0 & R_{33} & R_{34} & 0 & 0 \\ 0 & 0 & R_{43} & R_{44} & 0 & 0 \\ R_{51} & R_{52} & 0 & 0 & 1 & R_{56} \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_1' \\ y_1 \\ y_1 \\ 0 \\ \delta p_1 \\ p_1 \end{pmatrix}$$

Simulation results: laser cooling process

Simulation results: the coherent effect

Ultra-high power of the central peak appears only:

$$h_{obs}/h_{bun} =$$
Integer

 h_{bun} =40, change h_{obs} h_{obs} : Observation harmonic h_{bun} : RF-bunching harmonic

Simulation results: the coherent effect

Relationship between the Schottky power and number of ions

Method 1. Fit the sidebands of the Schottky spectrum

Method 2. Calculate the r.m.s width of the Schottky sidebands

Method 3. Sum the Schottky power of each sideband

Summary

1. First laser cooling of ${}^{16}O^{5+}$ ion beams at the storage rings:

- Highest charge state and energy
- Shortest transition wavelength: 103 nm
- Laser cooling with a CW laser and the electron cooler
- Simulation of laser cooling of ¹⁶O⁵⁺ ion beams at the CSRe.
 Laser cooling process
 - Schottky spectrum of laser-cooled bunched ¹⁶O⁵⁺ ion beams
 - Coherent effect
 - Extraction of momentum distribution from Schottky spectrum of bunched ion beams

Acknowledge

IMP:

W.Q. Wen, H.B. Wang, D.Y. Chen, Z.K. Huang, D.M. Zhao, X.L. Zhu, X.N. Li, J. Li, L.J. Mao, R.S. Mao, T.C. Zhao, J.X. Wu, D.Y. Yin, J.C. Yang, Y.J. Yuan, and X. Ma*

Xidian University:

D. C. Zhang

GSI:

D. Winters, S. Klammes, S. Litvinov, L. Eidam TU Darmstadt:

- D. Kiefer, Th. Walther, B. Rein, G. Birkl HZDR:
- M. Bussmann, M. Loeser, M. Siebold, U. Schramm

Thanks for your attention !