

FAIR GmbH | GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

Laser cooling collaboration

GSI Darmstadt

Lars Bozyk, Sebastian Klammes, Thomas Kühl, Rodolfo Sanchez, Peter Spiller, Markus Steck, Thomas Stöhlker¹, Danval Winters (¹also HI Jena & Uni Jena)

HZDR, TU Dresden

Michael Bussmann², Markus Loeser, Mathias Siebold, Ulrich Schramm (²also CASUS Görlitz)

TU Darmstadt

Tobias Beck, Gerhard Birkl, Oliver Boine-Frankenheim, Lewin Eidam, Jens Gumm, Max Horst, Daniel Kiefer, Benedikt Langfeld, Benjamin Rein, Wilfried Nörtershäuser³, Thomas Walther³ (³also HFHF Campus Darmstadt)

Uni Münster

Axel Buß, Volker Hannen, Ken Ueberholz, Johannes Ullmann, Christian Weinheimer, Daniel Winzen

IMP-CAS, Lanzhou, China

Dongyang Chen, Zhongkui Huang, Xinwen Ma, Hanbing Wang, Weigiang Wen

Uni Kassel

Nils Kiefer, Arno Ehresmann

HELMHOLTZ Helmholtz-Institut lena

WILHELMS-UNIVERSITÄT

WESTFÄLISCHE

MÜNSTER

KASSFI

ERSITAT

Why is our laser cooling interesting?

- laser cooling is frequently applied to atoms/ions in small traps (~cm)
- normally, several laser beams are used coming from different directions \rightarrow 3D

extreme

- the laser light is mostly continuous (cw)
- typically, light atoms/ions (singly charged) are used (Be, Na, Mg, Ca ...)
- the velocities of the atoms/ions is usually low
- we want to apply it to a very large accelerator (~1.1 km)
- our laser beams come from one direction only \rightarrow 1D
- we will use cw and pulsed laser beams (MHz rep. rate)
- we will use heavy ions in very high charge states
- the ions have relativistic velocities (99% of c)

Motivation

- create worldwide unique laser cooling facility @ FAIR SIS100
- first application of laser cooling at a large synchrotron using novel cw & pulsed laser and detection systems
- possibility to deliver very cold & very short ion bunches to FAIR experiments (*e.g.* plasma physics)
- "efficiency" of laser cooling increases with ion beam energy (γ)
- highly relativistic ion energies of the SIS100 allow **cooling of many ion species** by exploiting the huge Doppler shift (γ up to 13): Z = 10 54
- laser spectroscopy of the electronic structure of heavy ions

3-beam laser cooling at the SIS100

Using **three** laser systems at the SIS100 simultaneously combines the advantages of:

- covering a large ion velocity range
- suppressing heating effects like IBS
- fast cooling (order of seconds)
- > lowest possible longitudinal ion momentum spread $\Delta p/p \sim 10^{-7}$
- shortest ion bunch lengths (order of ~10 ns)

But ... requires overlap of ion and laser beams in space, time & energy !

Laser cooling of a large range of ions

calculations by Lewin Eidam

FAIR GmbH | GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

Ion species for laser cooling at SIS100 (green laser)

1. Regime: $B\rho = 80$ Tm, λ (laser) = 514 nm (2.412 eV)

El. sequence	Q/M range	Transition	j-j transition	∆E laser, nm	Nucl. charge
					Z _n range
Li-like	0.25 - 0.43	2s - 2p	1/2 - 1/2	22 - 40	16 - 28
			1/2 - 3/2		16 - 24
Be-like	0.17 - 0.40	$2s^2 - 2s2p$	1/2 - 1/2	24 - 58	15 - 30
			1/2 - 3/2		14 - 23
B-like	0.08 - 0.40	$2s^22p-2s2p^2\\$	1/2 - 1/2	25 - 120	8 - 27
			1/2 - 3/2		7 - 20
Na-like	0.04 - 0.34	3s - 3p	1/2 - 1/2	30 - 200	13 - 29
			1/2 - 3/2		13 - 27
K-like	0.025 - 0.30	4s - 4p	1/2 - 1/2	32 - 280	21 - 45
			1/2 - 3/2		21 - 40

these ions are the lighter ones

Ion species for laser cooling at SIS100 (UV laser)

2. Regime: $B\rho = 100 \text{ Tm}, \lambda(\text{laser}) = 257 \text{ nm} (4.824 \text{ eV})$

El. sequence	Q/M range	Transition	j-j transition	∆E laser, nm	Nucl. charge
					Z _n range
Li-like	0.25 - 0.43	2s-2p	1/2 - 1/2	9-16	38 - 60
			1/2 - 3/2		28 - 36
Be-like	0.17 - 0.40	$2s^2 - 2s2p$	1/2 - 1/2	10 - 23	30 - 56
			1/2 - 3/2		25 - 36
B-like	0.08 - 0.40	$2s^22p - 2s^22p^2$	1/2 - 1/2	10 - 48	17 - 56
			1/2 - 3/2		13 - 33
Na-like	0.04 - 0.34	3s-3p	1/2 - 1/2	12 - 90	16 - 49
			1/2 - 3/2		16 - 40
K-like	0.025 - 0.30	4s-4p	1/2 - 1/2	13 - 130	24 - 80
			1/2 - 3/2		24 - 58

these ions are the heavier ones

calculations by Slava Shevelko

Expected cooling times and momentum spreads

Principle: bunched beam laser cooling

decays each time with a random recoil, averaging out to zero.

Principle: bunched beam laser cooling

laser

 $f_{bunching} = h \cdot f_{rev} \rightarrow h bunches$

oscillations are damped

Short pulse laser system

- Transform limited pulses with 1-100 ps pulse duration and up to 5 MHz repetition rate using a regenerative amplifier
- Up to 10 W average power @ 1028 nm using a single crystal fiber and **100 mW average power** @ 257 nm

Ref.: SPARC Collaboration, Technical Report. For the Design, Construction and Commissioning of the SPARC laser systems for laser cooling at the FAIR SIS100 (2020).

HZDR

Federal Ministry of Education and Research

Continuous wave laser system

Federal Ministry of Education and Research

- IR laser system is seeded by Littrow-ECDL @ 1028 nm
- Bow-tie cavity for conversion to 514 nm and novel elliptical bow-tie cavity for conversion to 257 nm
- narrow linewidth and mode hop free scanning over 20 GHz (50 Hz scan rate) @ 257 nm
- up to 1.6 W UV power could be demonstrated

> successful demonstration of cw laser cooling at the ESR @ GSI in 2012

laser-cooling of the ion beam using cw laser scan, then keeping the ions cold for a long time

Long pulse laser system

Federal Ministry of Education and Research

- Transform limited pulses with 1-10 MHz repetition rate and 50-740 ps pulse duration
- Multi-stage pulsed fiber amplifiers to generate up to 60 W average IR power
- Two single pass stages to generate 514 nm and 257 nm
- up to 4.1 W UV power (115 ps, 10 MHz) could be demonstrated

successful demonstration of first broadband very high
rep. rate laser cooling at the ESR @ GSI in 2021

FAIR SIS100

SIS100 laser cooling pilot facility

SIS100 sector 3: scrapers , laser in & out, fluo chamber

ring "inside"

spatial overlap ion & laser beams (slide added afterwards)

ion beam simulation by Youssef El Hayek (GSI)

SIS100 laser beamline

first FAIR SIS100 experiment component installed

SIS100 laser beamline

SIS100 maintenance tunnel

photo 2022

2022

taken January 2023

Outlook

- Continue test measurements of components
 - Mirror box for SIS100 beamline, control systems, ...
- SIS100 laser cooling infrastructure
 - Scrapers, UHV compatible laser mirrors (in/out), …
- Installation of components "along the beamline" from 2024 onwards
- Work on data acquisition (Electronics, controls, cables, ...)
- Dresden & Darmstadt groups have applied for funding (BMBF 2024 2027) to build the final laser systems (which will e.g. have more power)

XUV FLUORESCENCE DETECTION OF LASER-COOLED STORED RELATIVISTIC IONS

