## ELECTRON COOLING IN NICA ACCELERATION COMPLEX

Valeri Lebedev on behalf of team Veksler and Baldin Laboratory for High Energy Physics Joint Institute for Nuclear Research



# NICA: Nuclotron based Ion Collider fAcility

# **NICA complex layout**







RuPAC, Novosibirsk, September 2023







**Project ion intensity** 2.10<sup>9</sup> Bi<sup>35+</sup> per pulse



Xe ion charge distribution at KRION exit

Достигнутые величины Ar<sup>16+</sup> - 5·10<sup>8</sup> ions per pulse Xe<sup>28+</sup> - 10<sup>8</sup> ions per pulse Bi<sup>35+</sup> - 10<sup>8</sup> ions per pulse

First Collider beam run is planed with Xe<sup>28+</sup> and Bi<sup>35+</sup> ions

# HILAC & Booster injection beam line

# Stable and reliable operation during Booster commissioning with Fe<sup>14+</sup> (Run II) and Xe<sup>28+</sup> (Run IV) beams

|                                     | Comn      |        |            |
|-------------------------------------|-----------|--------|------------|
| A/a (Taraet Ion Au <sup>31+</sup> ) | 6.25      | 2010'' | ;d         |
| Ragm current                        | < 10 am 1 | 40     | 19         |
| Benetition rate                     | < 10 EmA  |        |            |
| Output energy                       | 3.2 MeV/u |        |            |
|                                     |           |        | TRANSFERRE |

Transmission of 2mA Fe<sup>14+</sup> ions beam up to 75% from RFQ to the exit of the HILAc, 3.2 MeV/u





BEVATECH

Germany

# HILAC status Stable and reliable operation with Ar<sup>13+</sup> and Xe<sup>28+</sup> in Run IV





At RFQ exit I=100  $\mu$ A (yellow line). At HILAC exit I=65  $\mu$ A at ion pulse duration 22  $\mu$ S (red line), about 70% at this pulse of target ions <sup>124</sup>Xe<sup>28+</sup>. Number of ions accelerated in HILAC at energy 3,2 MeV/n is about 1×10<sup>8</sup>.

Project HILAC intensity <sup>209</sup>Bi<sup>35+</sup> at energy 3,2 MeV/n is about 1.8×10<sup>9</sup> per pulse.

Further development: realization of multy cycle injection with electron cooling and upgrade of KRION-6T





# **Beam current & vacuum conditions**

<u>**16.09.2021:**</u> Measurements of integral vacuum conditions by intensity decay of circulating He<sup>1+</sup>

### Parametric beam current transformer signal (DC mode)



16.09.2021 03:33:28 Z/A=1/4 Binj = 730 Γc







# **Beam acceleration in Booster**



### Step 1 of commissioning December 2020, He<sup>1+</sup>

PCT signal when beam injecting into rising field, capturing (~60%), accelerating & decelerating: no transient losses on the MF table & after.

### Step 2 of commissioning 14-23 of September 2021 Fe<sup>14+</sup>

- Beam injection with adiabatic capturing at 5<sup>th</sup> harmonic (>95%),
- accelerating up to 65 MeV/u,
- recapturing 1 harmonic (close to 100%)
- acceleration up to 578 Mev/u
- $\blacktriangleright$  with dB/dt = 1.2 T/s
- electron cooling





# **Booster Beam current**

#### Parametric beam current transformer signal (DC mode)

16.01.2023 17:50:47 Z/A=28/124 Binj = 810 Γc



Booster-Nuclotron run - September 2022 - February 2023 for BM@N baryonic matter researches. Booster acceleration of ions<sup>124</sup>Xe<sup>28+</sup> to energy 204,7 MeV/n, where they were stripped up to bare nucleus end extracted to Nuclotron.

 $\checkmark$  <u>6.10<sup>8</sup> elementary charges ~ 2.5.10<sup>7</sup> of Xe<sup>28+</sup></u>





# **Beam injection to the Nuclotron ring**

Installation was finished 31/12/2021







### Ion beams in Nuclotron

| - I man /                |                                                               |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                | Project                                                       | Status<br>(June 2018)                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Max.magn.field, T        | 2                                                             | 2 (1.7 T routine)                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| B-field ramp, T/s        | 1                                                             | 0.8 (0.7 routine)                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Accelerated<br>particles | p-∪, d↑                                                       | p↑, d↑, p - Xe                                                                                                                                                                                                                                                                                                              | Nuclotron since operation 1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Max. energy,<br>GeV/u    | 12 (p), 5.8<br>(d)<br>4.5( <sup>197</sup> Au <sup>79+</sup> ) | 5.6 (d, <sup>12</sup> C),<br>3.6 ( <sup>40</sup> Ar <sup>16+</sup> )                                                                                                                                                                                                                                                        | 1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1      1 |
| Intensity,<br>ions/cycle | 1E11(p,d),<br>2E9 (A ><br>100)                                | d 4*10 <sup>10</sup> (2*10 <sup>10</sup><br>routine),<br><sup>7</sup> Li <sup>3+</sup> 3*10 <sup>9</sup><br><sup>12</sup> C <sup>6+</sup> 2*10 <sup>9</sup><br><sup>40</sup> Ar <sup>16+</sup> 1*10 <sup>6</sup><br><sup>78</sup> Kr <sup>26+</sup> 2*10 <sup>5</sup><br><sup>124</sup> Xe <sup>42+</sup> 1*10 <sup>4</sup> | 78Kr+26 beam<br>acceleration (3,2 GeV/u)<br>RUN #55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Intensity of xenon ion beam was increased by 3 orders of magnitude at Booster-Nuclotron run 2022-2023

# Heavy ion beams acceleration and slow extraction Jan. 2023

## <sup>124</sup>Xe<sup>+54</sup> beam extraction (3,9 Gev/u) RUN #4 at NICA complex





RuPAC, Novosibirsk, September 2023

# Electron Cooling

# **Electron cooling section**

## **Contracted by BINP**

| Achieved             | Value              |
|----------------------|--------------------|
| parameters           |                    |
| Electron energy, keV | 40                 |
| Electron current, A  | 1                  |
| Magnetic field, kGs  | 1                  |
| Filed homogeneity    | 2×10 <sup>-5</sup> |
| Vacuum pressure, Pa  | 3×10 <sup>-9</sup> |



May 2016 – commissioned at BINP

## In Booster operation since 2021





JINR





Beam current dependence on time with and without electron cooling. Rf harmonic number – 5. Cooling cycle duration - 200 ms. Electron beam current 50 mA. Electron beam voltage 1.83 keV



### Electron cooling of <sup>124</sup>Xe28+ at electron beam current 50mA and energy 1,830 keV



Image of electron beam at Nuclotron entrance without cooling and with cooling.

At electron cooling the rate of events in BM@N was increased by 2 times.

# Further Development of Injection Complex

# **Beam Accumulation at electron cooling**

- □ Beam accumulation happens in the longitudinal plane at Booster injection
  > 4 µs bunch 8 µs revolution time
  □ Each new injection happens after the previous one is cooled to the core
  - Expected injection rate 10 Hz
  - ➤ 10 15 injections will require
  - Total cycle duration ~5 s
- The permanently present 1<sup>st</sup> RF harmonic weakly affects large amplitude particles
- For small amplitude particles the cooling force will be intentionally reduced to avoid overcooling



- To avoid anticoolig we need to match well the injection magnetic field and e-beam energy
  - > It happens since for large  $\Delta p/p$ , dF/dt changes sign after reaching the peak

An increase of ion accumulation intensity by a factor of 5-10 is planned. However application of electron cooling is restricted by ion bunch space charge effects at a level of .10<sup>9</sup> ions of Bi<sup>35+</sup>





# **Preparation for the Next Run**

- Goals for intensity increase
  - ~10 times will be obtained from beam accumulation in Booster with e-cooling
  - Other 10 times will be obtained from minimizing beam loss
- List of main actions
  - Upgrade of Krion-6 to obtain 4 us pulse
    - 10 Hz operation was already demonstrated
  - Upgrade of linac hardware to operate at 10 Hz
  - Correcting software generating ramp of main dipoles:
    - Matching acc. rate to possibilities of RF voltage
  - Bringing energy of Booster-Nuclotron transfers to the design value
  - Adding correctors to Nuclotron
  - Finalizing orbit correction software
  - Adding 10 Hz operation to synchronization system
  - An upgrade of IPM





# Collider

# NICA collider parameters

| Ring circumference, m                        | 503,04                     |                            |                            |  |
|----------------------------------------------|----------------------------|----------------------------|----------------------------|--|
| Number of bunches                            | 22                         |                            |                            |  |
| Rms bunch length, m                          | 0.6                        |                            |                            |  |
| Beta-function in the IP, m                   | 0.6                        |                            |                            |  |
| Betatron tunes, Qx/Qy                        | 9.44/9.44                  |                            |                            |  |
| Ring acceptance                              | acceptance 40 π·mm·mra     |                            | d                          |  |
| Long. acceptance, $\Delta p/p$               | ±0.010                     |                            |                            |  |
| Gamma-transition, $\gamma_{tr}$              | 7.088                      |                            |                            |  |
| lon energy, GeV/u                            | 1.0                        | 3.0                        | 4.5                        |  |
| Ion number per bunch                         | <b>3.2·10</b> <sup>8</sup> | <b>2.9·10</b> <sup>9</sup> | <b>3.1·10</b> <sup>9</sup> |  |
| Rms dp/p, 10 <sup>-3</sup>                   | 0.7                        | 1.4                        | 1.9                        |  |
| Rms beam emittance, h/v,                     | 1.3/1.3                    | 1.3/1.1                    | 1.3/1.0                    |  |
| (unnormalized), $\pi$ ·mm·mrad               |                            |                            |                            |  |
| Luminosity, cm <sup>-2</sup> s <sup>-1</sup> | 0.8e25                     | 0.8e27                     | 1e27                       |  |
| IBS growthe time, sec                        | 160                        | 460                        | 2000                       |  |





Nuclotron-based Ion Collider fAcility

### The magnetic system: regular period



|                                     | Parameter                         | Dipole | Lens     |
|-------------------------------------|-----------------------------------|--------|----------|
|                                     | Number of magnets (units),<br>pcs | 80     | 46       |
|                                     | Max. magnetic field<br>(gradient) | 1.8 T  | 23.1 T/m |
|                                     | Effective magnetic length, m      | 1.94   | 0.47     |
|                                     | Beam pipe aperture (h/v),<br>mm   | 120/   | 70       |
|                                     | Distance between beams,<br>mm     | 32     | 0        |
| Азотные металлорукава и зставки ВВК | Overall weight, kg                | 1670   | 240      |
|                                     |                                   |        |          |
| Quadrupote unit Dipole unit         |                                   | e unit |          |



27

- One RF1 and four RF2 cavities were mounted. Installation of other four RF2 in the end of 2023
- RF3 cavities and amplifier in BINP. Installation in the end of 2024

#### Two prototypes of NICA HV Electron cooler



4.3 MeV, 0.5 A

BINP SB RAS (2012) V.V. Parkhomchuk et al E-cooler for COSY (from 2013) 2.0 MeV, 1.0 A









# **Electron Cooling System**

### **Contract with BINP**



| Parameter                                                       | Value                              |
|-----------------------------------------------------------------|------------------------------------|
| Electron energy, MeV<br>Energy instability, ∆E/E                | 0.2 – 2.5<br>≤ 1·10 <sup>-4</sup>  |
| Electron beam current, A                                        | 0.1 - 1.0                          |
| Cooling section length, m                                       | 6.0                                |
| Solenoid magnetic field, T<br>Field inhomogeneity, $\Delta$ B/B | 0.05 − 0.2<br>≤ 1·10 <sup>-5</sup> |

### Main parts of the E-Cooler delivered to JINR and stored in SPD hall.



Beginning of mounting – Winter 2024 First beam tests – Autumn 2025



# Plans

- Technological tests of collider equipment in 2024
- Bring the injection complex to the collider requirements by the beginning of 2025
- First beam operations in the second half of 2025

# Thank you for attention



JINR





Nuclotron-based Ion Collider fAcility

### The first Collider run with beam



#### NICA Stage II-a (basic configuration):

- 1. Injector chain: KRION => Booster => BTL BN => Nuclotron
- 2. BTL Nuclotron => Collider
- 3. Collider equipped with
- RF-1 (barrier voltage system) for ion storage
- RF-2 4 cavities per ring (100 kV RF amplitude)

Result: 22 bunches of the length  $\sigma$  ~ 2 m per collider ring that 2e25 cm<sup>-2</sup>·s<sup>-1</sup>. Maximum kinetic ion energy 2.5 GeV/n

|                     | Booster           |                     | Nuclotron           |                   | Collider                                                                                                                |
|---------------------|-------------------|---------------------|---------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------|
|                     | Injection         | Extraction          | Injection           | Extraction        |                                                                                                                         |
| E                   | 3,2<br>MeV/u      | 530<br>MeV/u        | 523<br>MeV/u        | 1,5-2,5<br>GeV/u  | 1,5-2,5 GeV/u                                                                                                           |
| N                   | 5·10 <sup>8</sup> | 3.5*10 <sup>8</sup> | 2.5*10 <sup>8</sup> | 2*10 <sup>8</sup> | 2*10 <sup>8</sup> (at injection)<br>4*10 <sup>9</sup> (at RF1<br>accumulation and<br>formation of 22<br>bunches by RF2) |
| В <sub>d</sub> , Тл | 0,1               | 1,6                 | 0,4                 | <1,2              | <1.2                                                                                                                    |



Dependence of luminosity on number ions per buch at different energies (1) 4.5 GeV/u (2) 3GeV/u, (3) 2 GeV/u, (4) 1 GeV/u.

### **Increase of luminosity for project value**

### **Electron Cooling System of NICA Collider**



**HV Electron Cooler for NICA Collider Design and construction at BINP Installation at NICA in 2023-2025** 



**RF3 Bunching** Number of RF3 cavities per ring -8



**RF3 station in BINP, installation 2025** 



Dependence of bunch length and momentum spread on time at cooling time of 100 s.

### Electron cooling of Fe<sup>14+</sup> ions at 3.2 MeV/u

1.Ion beam circulation and acceleration from injection energy 3.2 MeV/n up 65 MeV/n, corresponding to energy of electron cooling, in Booster at ECOOL magnetic field 0.7 kG 2.Operation of ECOOL with effective recuperation at electron beam current range 30-150 mA.





### **Booster electron cooling system**

Why do we need an electron cooler for the Booster?



# Main results of RUN-3 (Booster + Nuclotron)

### **Winter 2022**

#### Beam intensity in the Booster

intensity in the Nuclotron



Booster and Nuclotron beam DC current transformers signals





# **NICA accelerators**

**Collider** The Collider ring 503.04 m long has a racetrack shape and is based on double-aperture (top-to-bottom) superconducting magnets at maximum dipole field 1.8 T;

The major parameters of the NICA Collider are the following: - magnetic rigidity = 45 T·m; -ion kinetic energy range from 1 GeV/u to 4.5 GeV/u for Au<sup>79+</sup>:

-energy of polarized deuterons is 6 GeV/u, protons – 12 GeV,

- vacuum in a beam chamber: 10<sup>-11</sup> Torr;
- zero beam crossing angle at IP;
- 9 m space for detector allocations at IP's;

Average luminosity  $10^{27}$  cm<sup>-2</sup>·s<sup>-1</sup> for gold ion collisions at  $\sqrt{s_{NN}} = 9$  GeV.

The luminosity in the polarized mode is up to  $10^{32}$  cm<sup>-2</sup>·s<sup>-1</sup>.

Commissioning –2021-2023 Technological run- September of 2024 First beam run –end of 2024





