

Beam Measurements of a Palmer Pick-up for the Collector Ring of FAIR

C. Peschke, R. Böhm, C. Dimopoulou, S. Wunderlich, C. Zhang (GSI, Darmstadt, Germany)

Measurement Setup at the Cooler Synchrotron (COSY) of FZJ

Measurement and Data Analysis

ownstream

LNAs as electrically cold loads LNAs RF multi plexer 07-10P-GW-APM) <u>]→</u>0000(ŷ000 8.3 m Suhner SX04272D-02 50 cm Semiterminators Flex .141 SA IN -0 power supplies 2·12V, 2·800mA spectrum analyzer LNA as terminator Rohde & Schwarz FSV LNA as amplifier remote controlled RF multiplexer to select spectrum analyzer measurement signal from the main control room remote controlled • LNA inputs instead of normal terminators 8:1 RF multiplexer • without the subsequent signal processing • stored proton beam, weakly bunched (for BPM) noise figure (typ. LNA) normal velocity factor: $\beta = 0,830$ • typical number of protons: $N = 1.7 \cdot 10^{10}$ BD U U U U U U U U U U U U U U (measured for each run) typical beam dimensions: $\Delta x = 5.3$ mm $\Delta y = 3.9 \text{ mm}$ 0.4 dispersion at Palmer-PU: D = 0m 1.0 1.5 2.0

Palmer Pick-up for the Collector Ring (CR) of FAIR

- small distance to the kicker for low undesired mixing inner conductor
 - uses Faltin type structures for coupling
 - mechanically simple but show an high dispersion
 - \rightarrow 4 long rails of the Palmer arrangement divided into upstream and identical downstream parts
 - \rightarrow octave bandwidth
 - ferrite material for damping of undesired modes (116. Ferroxcube 4S60 64.64.6 mm³) developed using HFSS FEM field calculation program
 - tested with beam in the **Co**oler **Sy**nchrotron (COSY) of the **F**orschungs**z**entrum **J**ülich (FZJ)

• Palmer Pick-up for the Collector Ring (CR) of FAIR installed in the **Cooler Synchrotron (COSY) of the Forschungszentrum J**ülich (FZJ) · low noise amplifiers (LNAs) installed directly on the vacuum feedthroughs • spectrum analyzer, RF multiplexer, and power supply nearby the tank

front

Faltin rail:

outer conductor.

Results

• test efficiency of the active artificial cold terminators · installed LNAs as cold loads at the inputs of four upstream Faltin rails · normal passive terminators at the two downstream rails at the top side two downstream rails at the bottom side not measured (probably contact problems)

- artificial cold rails
- · mean noise temperature 130 K at 1...2 GHz - achieved at room temperature without any active cooled components · contribution of the LNAs at inputs and outputs \approx 56...94 K · remaining noise: losses of Faltin rails, matching, feedthroughs normally terminated rails

· as expected: noise temperature above room temperature

<u>C</u>

Tpos: h = -25.0 mm, v = +0.0 mm pos: h = +0.0 mm, v = +0.0 mm

beam positions position values from COSY BPMs position in respect to the mechanical center of structure · no electrical adjustment done measurements with beam on axis

 \cdots with horizontal offset ±25 mm • ... with vertical offset ±10 mm

pos: h = +25.0 mm, v = +0.0 mm

outside.top.upstream nside.bottom.upstream

outside,bottom,upstream MWS outside --- inside

nside,top,upstream

- without matching cones • without ferrite
- one quarter simulated

in frequency domain

- magnetic boundaries at symmetry planes
- radiating boundaries at ends of beam pipe

· pick-up simulated as kicker in time domain + FFT • with matching cones · without ferrite · full geometry simulated · no symmetry planes · ports at ends of beam pipe

- inside,top,upstream outside.top.upstream inside.bottom.upstream outside,bottom,upstream beam position oward inside of MWS outside - - - inside ମ୍<u>ସି</u> ଅପ୍ର ଅ 1.5 1.6 1.7 1.8 1.9 2.0 1.0 1.1 1.2 1.3
- comparison with FEM calculations HFSS calculation • only for beam on axis (one quarter simulated) \cdot only for $\beta = 0.83$ MWS calculations also for other beam positions

- · beam not exactly on electrical axis beam off axis
- · behave as expected

input port

electric

boundaries

inner

conductor

radiating boundary

slots

output port

beam direction

f [GHz]

(full geometry) · also for different β

 good agreement with MWS · mechanic and electrical axis slightly deviant FEM calculations · results are reliable

Conclusion

- The Palmer pick-up for the Collector Ring (CR) of the future FAIR facility has been tested successfully in the **Cooler Synchrotron** (COSY) at the Forschungszentrum Jülich (FZJ).
- The presented measurement results show a good agreement with electromagnetic FEM simulations (HFSS and Microwave Studio).
- The LNAs instead of resistors as artificial cold loads works as expected. We have achieved a mean noise temperature of 130 K in the frequency rage 1...2 GHz at room temperature.

Acknowledgement

• The authors thank the COSY team for the good prepared and smooth-running beam time, and especially Nikolay Shurkhno for his very helpful and agile data acquisition software.

 β variation · check usability for slightly different β $\circ \beta = 0.788$ \cdot only one MWS curve: h = ±1 mm is inside the same mesh cell · good agreement with MWS $\circ \beta = 0.900$ · good agreement with MWS · from the point of $mag(R_{\parallel})$, the PU is still usable

phase can not be measured

