

Advancements and Applications of **Cooling Simulation Tools:** GOETHE A Focus on Xsuite **UNIVERSITÄT** FRANKFURT AM MAIN P. Kruyt^{1,2}, D.Gamba¹, G. Franchetti²

¹CERN, Geneva, Switzerland, ²Goethe University, Frankfurt, Germany

pieter.martin.kruyt@cern.ch

Objectives

 Implement and validate an electron cooling module using the **Parkhomchuk** model, benchmarked against **Betacool** with CERN e-coolers. Incorporate a laser cooling module in Xsuite. • Apply the laser cooling module to simulate the Gamma Factory PoP experiment at CERN within the Super Proton Synchrotron (SPS).

Map of steady state solutions

SPS simulations

Electron Cooling

Comparison with Betacool

particles have with the laser.

Laser Cooling

Conclusions

Excitation

Find steady state solutions of optical Bloch equations. Emission

- 1. Particle loses energy because of the quasi head-on collision with the photon.
- 2. Excited particle emits photon in random direction, which can increase or decrease energy.
- Successful benchmark with Parkhomchuk model of Betacool.
- Introduced a laser cooling module in Xsuite. • The first results of simulations of coasting beams in the SPS capture the physics of laser cooling.
- Next: Simulate the full Gamma Factory PoP experiment.

COOL23, Montreux, Switzerland