Explicit expressions for non-magnetized bunched electron cooling

S. Seletskiy, A. Fedotov

International Workshop on Beam Cooling and Related Topics **Xplicit expressions for non-r

unched electron cooling

S. Seletskiy, A. Fedotov

International Workshop on Beam Coolir
Related Topics
8th – 13th October 2023

Sth – 13th October 2023**

Brookhaven National Laboratory

Topic of studies

Topic of studies
Recent success of Low Energy RHIC Electron
Cooler (LEReC) leads the way in development of Topic of studies

Recent success of Low Energy RHIC Electron

Cooler (LEReC) leads the way in development of

high energy electron coolers based on non-Topic of studies
Recent success of Low Energy RHIC Electron
Cooler (LEReC) leads the way in development of
high energy electron coolers based on non-
magnetized electron bunches accelerated by RF Topic of studies

Recent success of Low Energy RHIC Electron

Cooler (LEReC) leads the way in development of

high energy electron coolers based on non-

magnetized electron bunches accelerated by RF

cavities. cavities. Recent success of Low Energy RHIC Electron
Cooler (LEReC) leads the way in development of
high energy electron coolers based on non-
magnetized electron bunches accelerated by RF
cavities.
We derive explicit formulas for c Cooler (LEReC) leads the way in development of
high energy electron coolers based on non-
magnetized electron bunches accelerated by RF
cavities.
We derive explicit formulas for cooling rates in
non-magnetized electron coo high energy electron coolers based on no
magnetized electron bunches accelerated by
cavities.
We derive explicit formulas for cooling rates
non-magnetized electron coolers in presence
redistribution of cooling decrements.

The presented material (with more details) can be also found in:

S. Seletskiy, BNL-223860-2023-TECH, (2023)

Expressions for friction force

Expressions for friction force
$\vec{F} = -\frac{4\pi e^4 Z_i^2}{m_e} \int \Lambda_C \frac{\vec{v}_i - \vec{v}_e}{ \vec{v}_i - \vec{v}_e ^3} f(r_e, v_e) d^3 v_e$
Example of force components (EIC Ring Electron Cooper):
Electronic Code:

We consider an
\nelectron
\nelectron
\nwhich Gaussian 6-D
$$
\int x
$$
 = $\frac{1}{\gamma(2\pi)^3 \Delta_x \Delta_y \Delta_z \sigma_{xe} \sigma_{ye} \sigma_{ze}} f_x f_y f_z$
\nwith Gaussian 6-D $\int x$ = $\exp \left[-\frac{(x - D_e \delta_e)^2}{2\sigma_{xe}^2} - \frac{v_{ye}^2}{2\Delta_x^2} \right]$
\ndistribution in the
\npresence of e-beam
\ndispersion (D_e) in $\int y$ = $\exp \left(-\frac{y^2}{2\sigma_{ye}^2} - \frac{v_{ye}^2}{2\Delta_x^2} \right)$
\ndispersion (D_e) in $\int y$ = $\exp \left(-\frac{z^2}{2\sigma_{ze}^2} - \frac{v_{ze}^2}{2\Delta_x^2} \right) = \exp \left(-\frac{z^2}{2\sigma_{ze}^2} - \frac{\delta_e^2}{2\sigma_{ze}^2} \right)$
\nthe cooling section
\n
$$
\int f(r_e, v_e) = n_e f_{ve}
$$

\n
$$
n_e
$$
 = $\frac{1}{\gamma(2\pi)^{3/2} \sigma_{1xe} \sigma_{ye} \sigma_{ze}} \exp \left[-\frac{x^2}{2\sigma_{1xe}^2} - \frac{y^2}{\sigma_{ye}^2} - \frac{z^2}{\sigma_{ze}^2} \right]$
\n
$$
f_{ve}
$$

\n
$$
f_{ve}
$$
 = $\frac{1}{(2\pi)^{3/2} \Delta_x \Delta_y \Delta_{1z}} \exp \left[-\frac{v_{xe}^2}{2\Delta_x^2} - \frac{v_{ye}^2}{\Delta_y^2} - \frac{(v_{ze} - \mu_z)^2}{\Delta_{1z}^2} \right]$
\n
$$
\sigma_{1xe}
$$
 = $\sqrt{\sigma_{xe}^2 + D_e^2 \sigma_{be}^2}$
\n
$$
\Delta_{1z}
$$
 = $\Delta_z \frac{\sigma_{xe}}{\sqrt{\sigma_{xe}^2 + D_e^2 \sigma_{be}^2}}$
\n
$$
\mu_z
$$
 = $x \Delta_z \frac{D_e \sigma_{be}}{\sigma_{xe}^2 + D_e^2 \sigma_{be}^2}$

Then, the
\nforce is:
$$
\vec{F} = -Cn_e \int \frac{\vec{v}_i - \vec{v}_e}{|\vec{v}_i - \vec{v}_e|^3} f_{ve} d^3 v_e \qquad C = \frac{4\pi N_e e^4 Z_i^2 \Lambda_C}{m_e}
$$

We can introduce an U effective potential in a velocity-space:

$$
U = C \int \frac{f_{ve}}{|\vec{v}_i - \vec{v}_e|} d^3 v_e \qquad F_{x,y,z} = \partial U / \partial v_{xi,yi,zi}
$$

For the case $\Delta_{\chi} = \Delta_{\chi} \equiv \Delta_{\perp}$, the friction force becomes:

$$
\begin{cases}\nF_{x,y} = -\tilde{C}n_e v_{xi,yi} \int_0^\infty g_\perp(q) dq & \tilde{C} = 2\sqrt{2\pi} N_e r_e^2 m_e c^4 Z_i^2 \Lambda_C \\
F_z = -\tilde{C}n_e (v_{zi} - \mu_z) \int_0^\infty g_z(q) dq \\
g_\perp(q) = \frac{1}{\Delta_\perp^2 (1+q)^2 \sqrt{\Delta_\perp^2 q + \Delta_{1z}^2}} \exp\left[-\frac{v_{xi}^2 + v_{yi}^2}{2\Delta_\perp^2 (1+q)} - \frac{(v_{zi} - \mu_z)^2}{2(\Delta_\perp^2 q + \Delta_{1z}^2)}\right] \\
g_z(q) = \frac{1}{(1+q)(\Delta_\perp^2 q + \Delta_{1z}^2)^{3/2}} \exp\left[-\frac{v_{xi}^2 + v_{yi}^2}{2\Delta_\perp^2 (1+q)} - \frac{(v_{zi} - \mu_z)^2}{2(\Delta_\perp^2 q + \Delta_{1z}^2)}\right]\n\end{cases}
$$

For detailed derivation and for general case of $\Delta_x \neq \Delta_y$ see:

S. Seletskiy, A. Fedotov, BNL-222963-2022-TECH, https://arxiv.org/pdf/2205.00051v2.pdf (2022) S. Seletskiy, A. Fedotov, BNL-220641-2020-TECH (2020) In approximation of small amplitudes:

$$
F_x = -C_x \cdot n_e \cdot v_{xi}
$$

\n
$$
F_z = -C_z \cdot n_e \cdot (v_{zi} - K \cdot x_i)
$$

\n
$$
C_x = C_0 \cdot h \cdot \Phi \left(\frac{\sigma_{\delta e}}{\gamma \sigma_{\theta e}} \frac{1}{h} \right)
$$

\n
$$
C_z = 2C_0 \cdot h \cdot \left[1 - \Phi \left(\frac{\sigma_{\delta e}}{\gamma \sigma_{\theta e}} \frac{1}{h} \right) \right]
$$

\n
$$
C_0 = \frac{2\sqrt{2\pi} N_e r_e^2 m_e c Z_i^2 \Lambda_C}{\gamma^2 \beta^3 \sigma_{\theta e}^2 \sigma_{\delta e}}
$$

\n
$$
h = \frac{\sqrt{\sigma_{xe}^2 + D_e^2 \sigma_{\delta e}^2}}{\sigma_{xe}^2}
$$

\n
$$
K = \beta c \frac{D_e \sigma_{\delta e}^2}{\sigma_{xe}^2 + D_e^2 \sigma_{\delta e}^2}
$$

\n
$$
\Phi(d) = \begin{cases} \frac{d}{1 - d^2} \left(\frac{\arccos(d)}{\sqrt{1 - d^2}} - d \right), & d < 1 \\ 2/3, & d = 1 \\ \frac{d}{d^2 - 1} \left(\frac{\log(d - \sqrt{d^2 - 1})}{\sqrt{d^2 - 1}} + d \right), & d > 1 \end{cases}
$$

$$
n_e = \frac{1}{\gamma (2\pi)^{3/2} \sigma_{1xe} \sigma_{ye} \sigma_{ze}} \exp\left[-\frac{x^2}{2\sigma_{1xe}^2} - \frac{y^2}{\sigma_{ye}^2} - \frac{z^2}{\sigma_{ze}^2}\right]
$$

 $=\sqrt{\sigma_{xe}^2 + D_e^2 \sigma_{\delta e}^2}$ σ_{1xe}

Cooling rate redistribution

On a single pass through the cooling section, an ion's angle and relative momentum change as:

$$
\begin{array}{rcl}\n\Delta x'_{i} & = & -c_{x} \cdot n_{e1} \cdot x'_{iCS} \\
\Delta \delta_{i} & = & -c_{z} \cdot n_{e1} \cdot (\delta_{iCS} - k \cdot x_{iCS}) \\
c_{x} & = & \tilde{c}_{0} \cdot h \cdot \Phi \left(\frac{\sigma_{\delta e}}{\gamma \sigma_{\theta e}} \frac{1}{h} \right) \\
c_{z} & = & 2\tilde{c}_{0} \cdot h \cdot \left[1 - \Phi \left(\frac{\sigma_{\delta e}}{\gamma \sigma_{\theta e}} \frac{1}{h} \right) \right] \\
k & = & \frac{D_{e}\sigma_{\delta e}^{2}}{\sigma_{xe}^{2} + D_{e}^{2}\sigma_{\delta e}^{2}} \\
n_{e1} & = & \frac{1}{(2\pi)^{3/2} \sigma_{1xe} \sigma_{ye} \sigma_{ze}} \exp \left[-\frac{x^{2}}{2\sigma_{1xe}^{2}} - \frac{y^{2}}{\sigma_{ye}^{2}} - \frac{z^{2}}{\sigma_{ze}^{2}} \right] \\
\tilde{c}_{0} & = & \frac{2\sqrt{2\pi} N_{e} r_{e}^{2} Z_{i}^{2} \Lambda_{C} L_{CS}}{\gamma^{4} \beta^{4}} \frac{m_{e}}{A_{i} m_{p}} \frac{1}{\sigma_{\theta e}^{2} \sigma_{\delta e}} \\
h & = & \frac{\sigma_{xe}}{\sigma_{xe}^{2}} \\
\sigma_{1xe} & = & \sqrt{\sigma_{xe}^{2} + D_{e}^{2} \sigma_{\delta e}^{2}}\n\end{array}
$$

Introduce ion dispersion (D_i) in the cooling section. Then on a single pas through the CS:

$$
x_{iCS} = x_{i0} + D_i \cdot \delta_{i0}
$$

\n
$$
x_{i1} = x_{iCS} - D_i \cdot (\delta_{iCS} + \Delta \delta_i) = x_{iCS} - D_i \cdot (\delta_{i0} + \Delta \delta_i)
$$

\n
$$
\Delta x_i = c_z \cdot n_{e1} \cdot D_i \cdot [\delta_{i0} - k \cdot (x_{i0} + D_i \cdot \delta_{i0})]
$$

\n
$$
\Delta x'_i = -c_x \cdot n_{e1} \cdot x'_{i0}
$$

\n
$$
\Delta \delta_i = -c_z \cdot n_{e1} \cdot [\delta_{i0} - k \cdot (x_{i0} + D_i \cdot \delta_{i0})]
$$

With the density of the e-bunch "probed" by the considered ion:

$$
n_{e1} = \frac{1}{(2\pi)^{3/2} \sigma_{1xe} \sigma_{ye} \sigma_{ze}} \exp\left[-\frac{(x_i + D_i \delta_i)^2}{2\sigma_{1xe}^2} - \frac{y_i^2}{\sigma_{ye}^2} - \frac{z_i^2}{\sigma_{ze}^2}\right]
$$

Horizontal and
longitudinal actions:
$$
J_x = \frac{1}{2} \left(\gamma_x x_i^2 + \beta_x x_i'^2 \right)
$$
 $J_z = \frac{1}{2} \left(\frac{z_i^2}{\beta_z} + \beta_z \delta_i^2 \right)$
 $\beta_z = \sigma_{zi} / \sigma_{\delta i}$

$$
\begin{array}{rcl}\n\Delta J_x & \approx & \frac{x_{i0}\Delta x_i}{\beta_x} + \beta_x x_{i0}' \Delta x_i' = \\
& = & \frac{c_z D_i}{\beta_x} n_{e1} \left(x_{i0} \delta_{i0} (1 - k_i) - k x_{i0}^2 \right) - c_x n_{e1} \beta_x x_{i0}'^2 \\
\Delta J_z & \approx & \beta_z \delta_{i0} \Delta \delta_i = -c_z n_{e1} \beta_z (\delta_{i0}^2 (1 - k_i) - k x_{i0} \delta_{i0})\n\end{array}
$$

$$
\Delta\varepsilon_x = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_i \Delta J_x dx_i dy_i dz_i dx'_i dy'_i d\delta_i
$$

$$
\Delta\varepsilon_z = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_i \Delta J_z dx_i dy_i dz_i dx'_i dy'_i d\delta_i
$$

We assume 6D
Gaussian
distribution for
$$
f_i = \frac{\exp\left(-\frac{x^2}{2\sigma_{xi}^2} - \frac{y^2}{2\sigma_{yi}^2} - \frac{z^2}{2\sigma_{zi}^2} - \frac{x'^2}{2\sigma_{\theta xi}^2} - \frac{y'^2}{2\sigma_{\theta yi}^2} - \frac{\delta^2}{2\sigma_{\delta i}^2}\right)}{(2\pi)^3 \sigma_{xi} \sigma_{yi} \sigma_{zi} \sigma_{\theta yi} \sigma_{\delta i}}
$$

ions:

Then, after integration, relative emittance change on a single pass through the CS:

$$
\begin{array}{rcl}\n\frac{\Delta \varepsilon_x}{\varepsilon_x} &=& -\frac{1}{(2\pi)^{3/2} \sqrt{D_i^2 \sigma_{\delta i}^2 + \sigma_{xi}^2 + \sigma_{1xe}^2} \sqrt{\sigma_{yi}^2 + \sigma_{ye}^2} \sqrt{\sigma_{zi}^2 + \sigma_{ze}^2}} \\
& & \cdot \quad \left(C_x + C_z \frac{D_i^2 \sigma_{\delta i}^2 + k D_i \sigma_{1xe}^2}{D_i^2 \sigma_{\delta i}^2 + \sigma_{xi}^2 + \sigma_{1xe}^2} \right) \\
\frac{\Delta \varepsilon_z}{\varepsilon_z} &=& -\frac{1}{(2\pi)^{3/2} \sqrt{D_i^2 \sigma_{\delta i}^2 + \sigma_{xi}^2 + \sigma_{1xe}^2} \sqrt{\sigma_{yi}^2 + \sigma_{ye}^2} \sqrt{\sigma_{zi}^2 + \sigma_{ze}^2}} \\
& & \cdot \quad \left(C_z - C_z \frac{D_i^2 \sigma_{\delta i}^2 + k D_i \sigma_{1xe}^2}{D_i^2 \sigma_{\delta i}^2 + \sigma_{xi}^2 + \sigma_{1xe}^2} \right)\n\end{array}
$$

10 We get cooling rates from $\lambda = \frac{1}{T}$ re $v \in C$, where T_{rev} is a revolution period

Main result

$$
\lambda_x = -P\left(c_{x0} + c_{z0}\frac{D_i^2\sigma_{\delta i}^2 + D_eD_i\sigma_{\delta e}^2}{D_i^2\sigma_{\delta i}^2 + \sigma_{x1}^2 + D_e^2\sigma_{\delta e}^2 + \sigma_{xe}^2}\right)
$$
\n
$$
\lambda_z = -P\left(c_{z0} - c_{z0}\frac{D_i^2\sigma_{\delta i}^2 + D_eD_i\sigma_{\delta e}^2}{D_i^2\sigma_{\delta i}^2 + \sigma_{x1}^2 + D_e^2\sigma_{\delta e}^2 + \sigma_{xe}^2}\right)
$$
\n
$$
P = \frac{\sqrt{D_e^2\sigma_{\delta i}^2 + \sigma_{x1}^2 + D_e^2\sigma_{\delta e}^2 + \sigma_{xe}^2}}{\sigma_{xe}\sqrt{D_i^2\sigma_{\delta i}^2 + \sigma_{x1}^2 + D_e^2\sigma_{\delta e}^2 + \sigma_{xe}^2}\sqrt{\sigma_{yi}^2 + \sigma_{ye}^2}\sqrt{\sigma_{zi}^2 + \sigma_{ze}^2}}
$$
\n
$$
c_0 = \frac{N_e r_e^2 Z_i^2 c \Lambda_c \eta}{\pi \gamma^4 \beta^3} \frac{m_e}{A_i m_p} \frac{1}{\sigma_{\theta e}^2 \sigma_{\delta e}}\right)
$$
\n
$$
c_{z0} = 2c_0 \cdot \left[1 - \Phi\left(\frac{\sigma_{\delta e}}{\gamma \sigma_{\theta e}}\frac{\sigma_{xe}}{\sqrt{\sigma_{xe}^2 + D_e^2\sigma_{\delta e}^2}}\right)\right]
$$
\n
$$
\Phi(d) = \begin{cases} \frac{d}{1 - d^2} \left(\frac{\arccos(d)}{\sqrt{1 - d^2}} - d\right), \ d < 1\\ \frac{d}{d^2 - 1} \left(\frac{\log(d - \sqrt{d^2 - 1})}{\sqrt{d^2 - 1}} + d\right), \ d > 1 \end{cases}
$$

11 These equations give explicit expressions for the cooling rates with $z \Rightarrow x$ redistribution

Special cases

Special cases
For $\boldsymbol{D}_e = \boldsymbol{0}$, Φ does not depend on D_e and neither do
coefficients c_{x0} , c_{z0} . Redistribution formula becomes: Special cases

For $\boldsymbol{D}_e = \boldsymbol{0}$, Φ does not depend on D_e and neither do

coefficients c_{x0} , c_{z0} . Redistribution formula becomes:

The formula in a similar form was
 $\lambda_x = -P(c_{x0} + c_{z0}r)$ first derived in [

$$
\lambda_x = -P(c_{x0} + c_{z0} r)
$$

$$
\lambda_z = -P(c_{z0} - c_{z0} r)
$$

$$
r = \frac{D_i^2 \sigma_{\delta i}^2}{D_i^2 \sigma_{\delta i}^2 + \sigma_{xi}^2 + \sigma_{xe}^2}
$$

The formula in a similar form was first derived in [H. Zhao, M. Blaskiewicz, Phys. Rev. Accel. Beams 24, 083502 (2021)], but without specifying the expressions for c_{x0} , c_{z0}

$$
C_0 = \frac{N_e r_e^2 Z_i^2 c \Lambda_C \eta}{\pi \gamma^4 \beta^3} \frac{m_e}{A_i m_p} \frac{1}{\sigma_{\theta e}^2 \sigma_{\delta e}} \frac{c_{x0} = c_0 \Phi \left(\frac{\sigma_{\delta e}}{\gamma \sigma_{\theta e}}\right)}{c_{z0} = 2c_0 \left[1 - \Phi \left(\frac{\sigma_{\delta e}}{\gamma \sigma_{\theta e}}\right)\right]}
$$

For $D_e = 0$ and $D_i = 0$:

And for friction force:

$$
F_{x,y} = -C \frac{v_{x,y}}{\Delta_{\perp}^2 \Delta_z} \Phi(\Delta_z/\Delta_{\perp})
$$

$$
F_z = -2C \frac{v_z}{\Delta_{\perp}^2 \Delta_z} (1 - \Phi(\Delta_z/\Delta_{\perp}))
$$

When
$$
\Delta_z = \Delta_{\perp} = \Delta
$$
,
\n $\Phi = 2/3$ and we get:
$$
F_{x,y} = F_z = -\frac{4\sqrt{2\pi}}{3} \frac{n_e r_e^2 m_e c^4 Z^2 L_c}{\Delta^3} v_{x,y,z}
$$

When $\Delta_z \ll \Delta_{\perp}$, $\Phi(d) \approx \pi d/2$, hence:

$$
F_{x,y} = -\pi \sqrt{2\pi} \frac{n_e r_e^2 m_e c^4 Z^2 L_C}{\Delta_{\perp}^3} v_{x,y}
$$

$$
F_z = -4\sqrt{2\pi} \frac{n_e r_e^2 m_e c^4 Z^2 L_C}{\Delta_{\perp}^2 \Delta_z} v_z
$$

The asymptotic expressions were first derived in [Ya. S. Derbenev, Dr. Thesis, (1978) https://arxiv.org/abs/1703.09735]

 $\left|\sigma_{xi}^2 + D_i^2 \sigma_{\delta i}^2 \ll \sigma_{xe}^2 + D_e^2 \sigma_{\delta e}^2, \sigma_{yi} \ll \sigma_{ye}, \sigma_{zi} \ll \sigma_{ze}\right|$

$$
\lambda_x = \lambda_{1x} + \frac{D_i D_e \sigma_{\delta e}^2}{\sigma_x^2 + D_e^2 \sigma_{\delta e}^2} \lambda_{1z}
$$
\n
$$
\lambda_z = \lambda_{1z} - \frac{D_i D_e \sigma_{\delta e}^2}{\sigma_x^2 + D_e^2 \sigma_{\delta e}^2} \lambda_{1z}
$$
\n
$$
\lambda_{1x} = \frac{N_e r_e^2 m_e c Z^2 L_c \eta}{\pi \gamma^4 \beta^3 A_i m_p \sigma_x \sigma_y \sigma_z \sigma_{\theta e}^2} \Phi \left(\frac{\sigma_{\delta e}}{\gamma \sigma_{\theta e}} \frac{\sigma_x}{\sqrt{\sigma_x^2 + D_e^2 \sigma_{\delta e}^2}} \right)
$$
\n
$$
\lambda_{1z} = \frac{2N_e r_e^2 m_e c Z^2 L_c \eta}{\pi \gamma^4 \beta^3 A_i m_p \sigma_x \sigma_y \sigma_z \sigma_{\theta e}^2} \left[1 - \Phi \left(\frac{\sigma_{\delta e}}{\gamma \sigma_{\theta e}} \frac{\sigma_x}{\sqrt{\sigma_x^2 + D_e^2 \sigma_{\delta e}^2}} \right) \right]
$$

The first two equations are well known (see, for example [Ya. S. Derbenev, https://arxiv.org/abs/1703.09735]). The full form of the expressions was derived in [S. Seletskiy, BNL-223540-2022-TECH (2022)]