

NoSQL Databases

Vincent.Garonne@cern.ch, Mario.Lassnig@cern.ch, Donal.Zang@cern.ch CERN-PH-ADP

Maxim.Potekhin@bnl.gov
Physics Applications Software Group - BNL

Acknowledgements

Database administrators

M. Blaszczyk

L. Canali

G. Dimitrov

F. Tique Aires Viegas

Outline

- Relational Database Management System (RDBMS)
- The NoSQL complementarity
- First experiences and results
- Future plans

Relational Databases (RDBMS)

- Critical Oracle dependency for PanDA and \mathcal{DQ}_2
- Great for enforcing data integrity in distributed applications
 - Atomicity/transactions
 - Prevent orphan records/duplicates
 - Constraint with primary keys
 - Primary/Secondary indexes
 - Quick retrieval of data
- · Cost for normalizing data
 - More tables, keys and indexes, table joins

RDBMS Limitations

- Hard to scale with data warehousing applications
 - As the databases grow larger, the queries start taking longer and longer
 - Non linear query execution time
 - Unstable query plans
 - Static schema
- Possible solutions
 - De-normalization
 - Flat schema
 - · Data partitioning
 - New indexes
- Requirements to query extremely large datasets/logs/archives with fast query speeds

Example $-\mathcal{DDM}$

Grid Tracer service

- Record relevant information about data Access and Usage
- Key and critical component for ATLAS
 - Automatic cleaning of grid storages based on popularity
- ullet \sim 70 traces/second, \sim 90 millions traces/month

Oracle issues

- Too static schema to store a lot of new metrics
 - Rate of requests/failures/transfer/etc.
 - Period: hour, day, month, year
 - Granularity: site, remotesite-localsite, users, etc
- · Long query time for accounting report
 - Plots for management always for yesterday ⊚

NoSQL Databases

- Google, Facebook, Amazon, Yahoo!
 - Process large amount of data at a petabyte scale
- NoSQL vs. RDBMS: Apples and Oranges ?
- Complementary technology to RDBMS
 - Eventual consistency (Brewer's CAP)
 - Schema-free
 - High throughput
 - Parallelism
 - Fault tolerant
 - Replication support
- Open source projects
 - Wide Column / Document / Key-Value Store
 - Cassandra vs Hadoop Hbase vs MongoDB vs Simpledb vs Dynamo vs Couchdb vs Hypertable vs Riak vs etc.

Experiences with NoSQL

Limited common test-bed cluster

- 4 VM nodes, 2 Intel/Xeon 2.27GHz, 4G
- Trivial deployment of NoSQL software

Applications relevant for NoSQL

NoSQL	Who
Hbase/MongoDB	M.Lassnig
Cassandra	M.Potekhin
Cassandra	D.Zang
	Hbase/MongoDB Cassandra

- ⇒ No transactions and relaxed consistency
- ⇒ Schemaless, multi dimensional queries, lot of data and fast query speeds

MongoDB

 \mathcal{DQ}_2 Accounting service

- Storage space and usage information
- Break down volumes by metadata information
 - E.g. location, datatype, custodiality

9/14

- Reports generated from Oracle
- One year of reports stored in two backends

	Retrievai	Setup	Used space	Dev. time
Oracle	0.3s	ADCR	38 GB	5 weeks + DBAs
MongoDB	0.4s	8 Cores/16G	42 GB	4 hours
Oracle MongoDB	4 Tables, 2		unctions, 365 F	Partitions/Y+hints

⇒ Schemaless, multi dimensional queries, lot of data and fast query speeds?

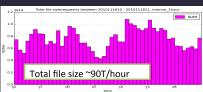
Cassandra

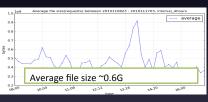
Overview

- Distributed database with no master node
- Automatic replication
- Large user community and commercial support
- Good responsiveness of developer team
- Infrastructure monitoring tools for free

Data model

- Column, Key, Column family
- Analogy with persistent dictionnary
- E.g. data model for \mathcal{DQ}_2 Tracer monitoring


```
{'201011102105':
    {local_read:{count:11436,min:0.0,max:5507.0,avg:518.07}}
}
```


\mathcal{DQ}_2 Tracer monitoring

- Statistic metrics in Cassandra
- · Generic monitoring on thousands of metrics

Tracer monitoring plots (based on statistic metrics in Cassandra)

Don Zang, PH-ADP/IHEP, 2011

Cassandra Scaling Tests

Test-bed issues

- Instability due to a not-so-optimal setup
- Too low-cost cluster
 - VM nodes
 - CPUs, Memory
 - No isolation between commit log and data file
- Good for learning and sharing experiences
 - · Data design, queries
 - Cf. Maxim's talk PanDA and NoSQL

Next steps

- Large insertion of data
- Large data analysis, e.g. map-reduce
- Best effort model for machines
 - ullet \sim 2/3 development machines, 8 Intel/Xeon 2.27GHz, 16G

Insertion speed: First results

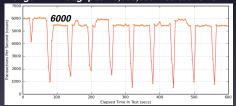
Workload

Concurrency: 10 threads Run time: 600s Ramp up: 5s Row: Tracer event

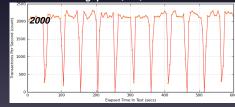
Python client

Oracle: cx_Oracle MongoDB: pymongo Cassandra: pycassa

Oracle Throughput: 327,948 inserted rows


Setup

Oracle: INTR 2 * 8 Cores 2.27HZ/ 24G


MongoDB: 3 * 8 Cores 2.27Hz/16G , 1 master, 3 slaves

Cassandra: 2 * 8 Cores 2.27Hz/16G, 2 replicas

MongoDB Throughput: 29,900,053 inserted rows

Cassandra Throughput: 1,124,815 inserted rows

High write speed with NoSQL (buffering effect)

Next step: Read queries against dedicated hardware + hbase + tunings

NoSQL Summary

- Complementary to Oracle, like caching, for certain data warehousing applications
 - We do have such applications
 - · More intuitive and flexible than Oracle
 - Save development time
- 3 NoSQL candidates: MongoDB, Cassandra, Hbase
- Need for a more powerfull test-bed to perform scaling tests
 - Large, random and I/Os intensive performance tests
 - Proposed test-bed setup [link]
- Happy to work with interested parties at CERN-IT
 - Expertise, testing facility and operational support