

Task 7.2.2 - Shower development in SDHCAL

Mary-Cruz Fouz CIEMAT

	UE	participants
--	----	--------------

Belgium: Ghent France: CNRS-IP2I, CNRS-LPC, CNRS-OMEGA Spain: CIEMAT

Non-UE participants

China: SJTU - Shanghai Jiao Tong University South Korea: GWNU - Gangneung–Wonju National University & SNUBH- Seoul National University Bundang Hospital

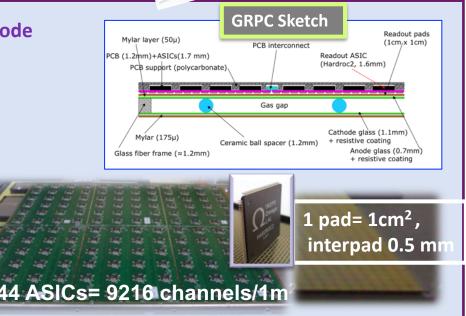
Introduction – The SDHCAL concept

SDHCAL - Semi-Digital Hadronic CALorimeter

A sampling hadronic calorimeter under development at CALICE Collaboration intended to be used with PFA reconstruction techniques. (\rightarrow High Granularity is a must) One of the proposed options for the *ILD (International Large Detector) at the ILC (International Linear Collider)* and for and *CEPC (Circular Electron Positron Collider)* detectors

Sampling calorimeter: Absorber: Stainless Steel + Detector: Glass Resistive plate Chambers

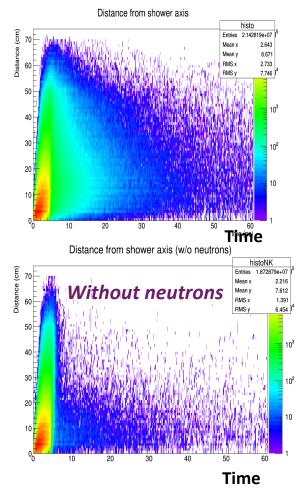
Detector: GRPC (Glass Resistive Plate Chambers) operating in avalanche mode

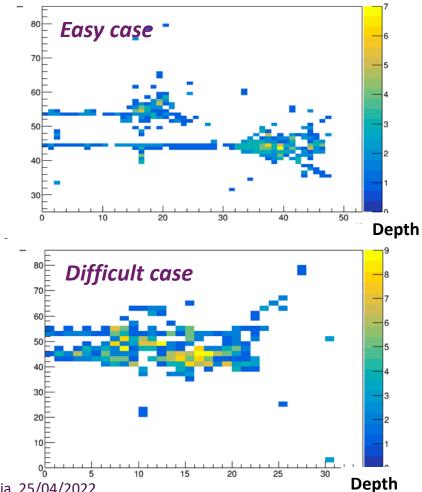

1x1 cm² pads. Semi-Digital Readout, 2bits - 3 thresholds
 → It counts how many and which pads have a signal larger than one of the 3 thresholds

Embedded electronics:

PCB separated from the GRPC by a mylar layer (50 μ m).

→ Bottom: 1x1cm2 pads

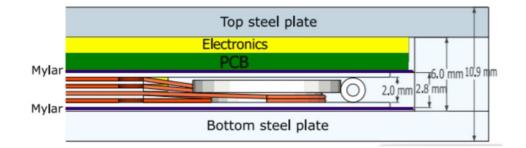

→ Top: HARDROC (HAdronic Rpc ReadOut Chip) & related connections Power-pulsed electronics: In stand-by during dead time in between ILC Collisions or spills in beam tests



Motivation of including timing readout

Timing could be an important factor to identify delayed neutrons and better reconstruct their energy

Time information can help to separate close by showers and reduce the confusion for a better PFA application. Example: pi-(20 GeV), K-(10 GeV) separated by 8 cm.


SDHCAL at AIDAInnova – Task 7.2.2

General goal: Extending the Semi-Digital Hadronic CALorimeter (SDHCAL) to include timing information (100 - 200ps resolution) for a **5D-calorimetry (space, amplitude & timing)**

Implementation: **Build small multi-gap RPC (MRPC)** equipped with a **new version of electronics** with **timing capabilities** to prove the final performance

The use of MRPC will improve the intrinsic timing of the detector but **electronic on the previous SDHCAL 1m3 prototype** has not high resolution timing capabilities.

→ Readout Chip **HARDROC3**. Time Stamping=**200ns**

Electronics for SDHCAL

Baseline ASIC

Petiroc2A/B

It is not the ASIC for the long term, only for exploring the capabilities. Some limitations as: difficult to chain, limited digital logic, deadtime

- 32 channels
- on-chip TDC
- Time resolution below 40ps

Developed at CNRS-OMEGA partially thanks to AIDA2020 for CMS-muon upgrade Other ASICS being or to be used

<u>NINO</u>

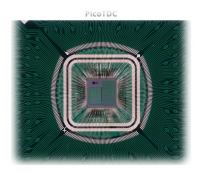
ASIC designed for the ALICE MRPC (TOF array)

- 8 channels
- Time resoltion ~50 ps

LiROC+picoTDC

weeroc

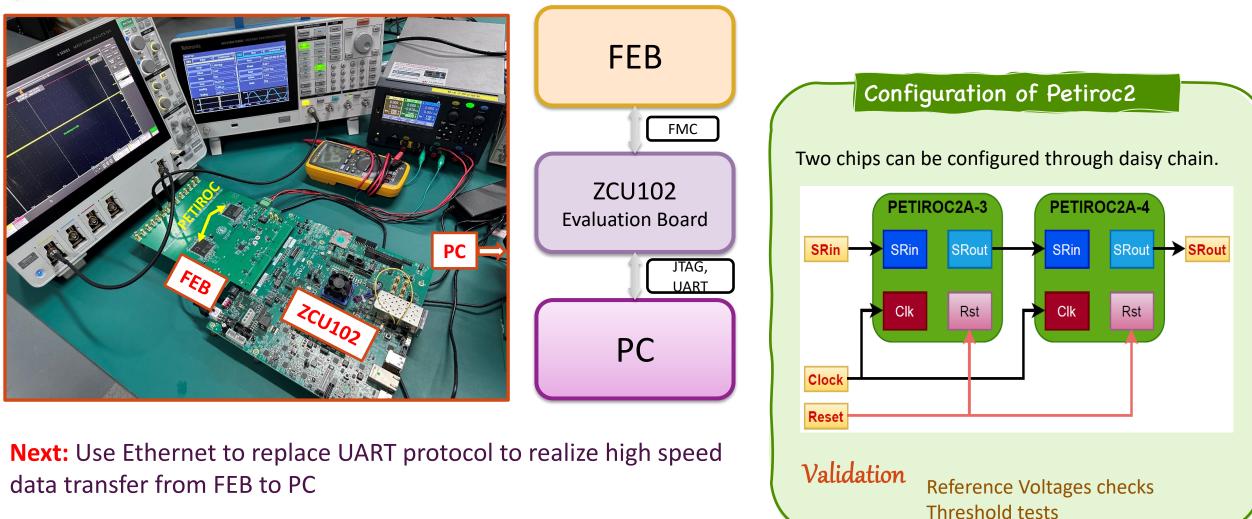
Based on LiROC 64-channel ASIC



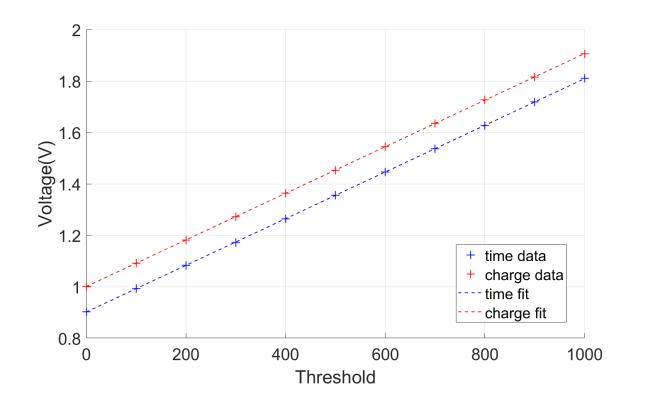
Board is under development by the WEEROC company

+

picoTDC


64 channel TDC ASIC Time resolution <12 ps

Some tests on PETIROC - Setup


6

Petiroc2B threshold tests

- Set different time and charge thresholds through 10-bit DAC configuration
- Use a voltage meter to measure the analog output of thresholds
- Linear regression and compare with the datasheet

Test Results of ours: $V_{time} = 0.0009 * threshold + 0.9016$ $V_{charge} = 0.0009 * threshold + 1.0008$

Test Results from datasheet v2.5a: $V_{time} = 0.0009 * threshold + 0.8941$ $V_{charge} = 0.0009 * threshold + 1.0131$

✓ The analog output of time and charge thresholds matched input DAC.

✓ The configuration of Petiroc2B is valid.

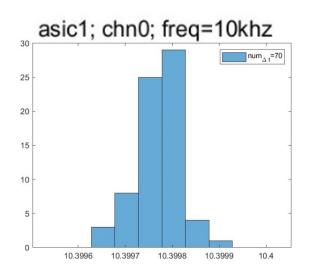
Single injection tests

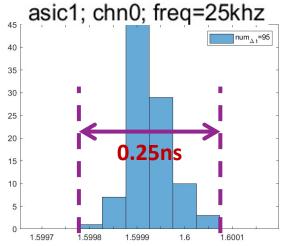
- To test if the new version of FEB has clean signals ۲ without crosstalk, we first did some single injection tests:
 - Inject the signal to one of the 32 channels of 1. one of the Petiroc2B chips.
 - readout the 960-bit data. 2.
 - check 'if_hit' data to see if any hits are 3. recorded except for the injected channel.
- All the masks are disabled during the tests. ۲

✓ No crosstalk in the FEB

					nject d	cnanne	ei				
	chip1	chn0	chn4	chn8	chn12	chn16	chn29	chip2	chn0	chn4	
	chn0	1	0	0	0	0	0	chn0	1	0	
	chn1	0	0	0	0	0	0	chn1	0	0	
	chn2	0	0	0	0	0	0	chn2	0	0	
	chn3	0	0	0	0	0	0	chn3	0	0	
	chn4	0	1	0	0	0	0	chn4	0	1	
	chn5	0	0	0	0	0	0	chn5	0	0	
	chn6	0	0	0	0	0	0	chn6	0	0	
	chn7	0	0	0	0	0	0	chn7	0	0	
	chn8	0	0	1	0	0	0	chn8	0	0	
	chn9	0	0	0	0	0	0	chn9	0	0	
	chn10	0	0	0	0	0	0	chn10	0	0	
	chn11	0	0	0	0	0	0	chn11	0	0	
if_hit data	chn12	0	0	0	1	0	0	chn12	0	0	
	chn13	0	0	0	0	0	0	chn13	0	0	
	chn14	0	0	0	0	0	0	chn14	0	0	
σ	chn15	0	0	0	0	0	0	chn15	0	0	
Ľ.	chn16	0	0	0	0	1	0	chn16	0	0	
ے _ا	chn17	0	0	0	0	0	0	chn17	0	0	
Ψ,	chn18	0	0	0	0	0	0	chn18	0	0	
.—	chn19	0	0	0	0	0	0	chn19	0	0	
	chn20	0	0	0	0	0	0	chn20	0	0	
	chn21	0	0	0	0	0	0	chn21	0	0	
	chn22	0	0	0	0	0	0	chn22	0	0	
	chn23	0	0	0	0	0	0	chn23	0	0	
	chn24	0	0	0	0	0	0	chn24	0	0	
	chn25	0	0	0	0	0	0	chn25	0	0	
	chn26	0	0	0	0	0	0	chn26	0	0	
	chn27	0	0	0	0	0	0	chn27	0	0	
	chn28	0	0	0	0	0	0	chn28	0	0	
	chn29	0	0	0	0	0	1	chn29	0	0	
	chn30	0	0	0	0	0	0	chn30	0	0	
	chn31	0	0	0	0	0	0	chn31	0	0	

inject channel

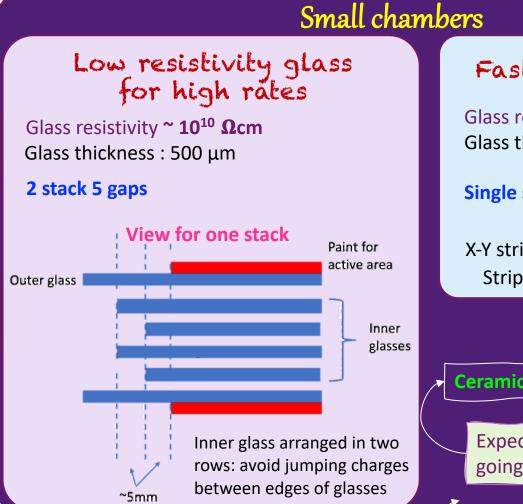



Two chips timing

Same signal injected into two chips (with a double-pass).

 Δt_{12} : Δt between two Petiroc2B chips of each hit.

$\overline{\Delta t_{12}}(\mu s)$	$std(\Delta t_1)(ps)$	$std(\Delta t_2)(ps)$	$std(\Delta t_{12})(ps)$	$f_{sig}(kHz)$
5.8000	41.0912	49.5356	73.5276	25
5.7999	48.6895	51.9453	78.4336	10



MRPC chambers under development

Fast timing MRPC

Glass resistivity ~ 5x10¹² Ωcm Glass thickness : 330 μm

Single stack 5 gaps

X-Y strip type MRPC Strip: **5mm pitch(4mm width)**

Ceramic Fishing lines: Ø 230 μm

Expecting less charge going to the fishing line

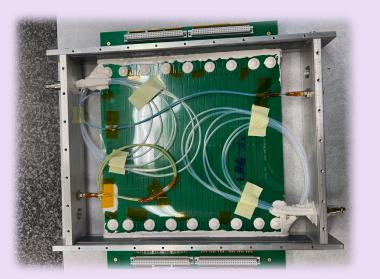
Large chambers

Glass resistivity ~ 10¹² - 10¹³ Ωcm

1x1m2 chambers

two times 4-gap PCB inserted between the two

Using spacers


1cm Strip width

Chamber + Electronic tests "Low resistivity" glass

Sealed gas gap Teflon tubes to make uniform gas flow

Electronics

- NINO chip for signal treatment
- V1290A TDC for digitization Caen 32/16 Channel Multihit TDC, 25ps LSB

Beam test at CERN April (ongoing) and August

Fast timing MRPC

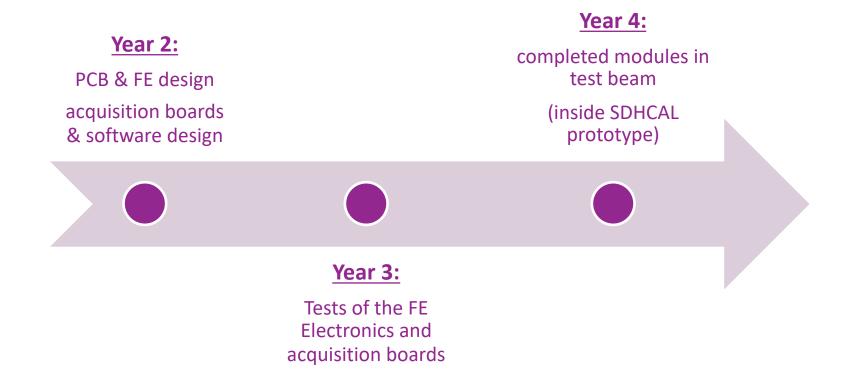
Electronics

LiROC + picoTDC not ready

Use NINO card + HPTDC (25ps)

For adaptation from single to differential signals, an interface card has been designed and manufactured for NINO, recently.

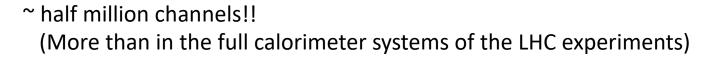
Chamber + Electronic tests "Standard" glass 1x1m2 chamber


Readout by: PETIROC+ external TDC Same cards as the ones developed for upgraded CMS RPC 2 PETIROC2 + FPGA Cyclone V + ethernet

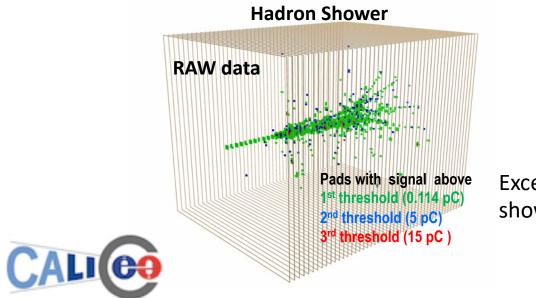
At the moment 64 strips in total can be read out but can be extended on future if needed.

Some tests to be done in incoming weeks

Tentative timeline



THANK YOU FOR YOUR ATTENTION



Introduction – The SDHCAL 1m3 SDHCAL Prototype

SDHCAL ~1.3m³ prototype At Test Beam @ CERN

Excellent detailed view of shower development

15