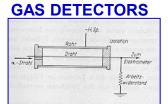


WP7 - TASK 7.5.1

TASK 7.5.1

Photon detectors for hadron particle identification at high momenta

A bridge between gaseous detectors and PID world


Silvia Dalla Torre on behalf of the Task 7.5.1 team

AIDAinnova annual meeting

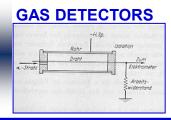
1

	Participating Institute/Compagny	Туре	Country	Main contact person	e-mail			
EU beneficiaries	Charles University	University	Czech R.	Miroslav Finger	Miroslav.Finger@cern.ch			
	INFN, Bari	Research Institute	Italy	Giacomo Volpe	giacomo.volpe@ba.infn.it			
	INFN, Bologna		Italy	Roberto Preghenella	Roberto.Preghenella@bo.infn.it			
	INFN, Trieste		Italy	Silvia Dalla Torre	Silvia.DallaTorre@ts.infn.it			
non-EU	USTC	University	China	Jianbei Liu	liujianb@ustc.edu.cn			
no financial obbligations	Incom, Inc.	Company	USA	Michel J. Minot	mjm@incomusa.com			

Task Leader: S. Dalla Torre, INFN-Trieste

About the non-EU participants

University of Science and Technology of China (USTC), Hefei, China

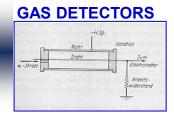

 USTC will be contributing to the development of the compact RICH concept by a complementary approach to the gaseous MPGD-based photon detection, developing and prototyping a photo-sensor making use of two grid layers.

INCOM, Inc., Charlton, USA

INCOM has built a first-version LAPPDs (large-size Micro Channel Plate-Photo Multipliers, MCP-PMT)
prototype and provided it for evaluation by the INFN collaborators. In a second step, a revised prototype,
taking into account the indications of the evaluation process, will be designed, built and provided to
collaborators for a second evaluation campaign.

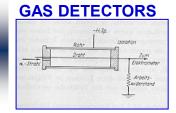
AIDA The scientific motivations

MOTIVATIONS


- the challenging requirements of a high-momentum RICH counter in a collider environment with hermetic detector architecture:
 - high momenta \rightarrow gaseous radiator for h-PID \rightarrow low Cherenkov photon rate per radiator unit length
 - collider hermetic detector \rightarrow short radiator namely a compact RICH
 - collider hermetic detector \rightarrow operation in magnetic field and in high-rate environment

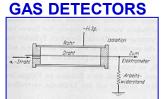
Two concrete options:

- a windowless RICH with gaseous PDs operated with the radiator gas itself \rightarrow enlarge **(i)** the number of photons by moving the wavelength detection window to extremely VUV photon (~120 nm)
- (ii) making use of the wide band of the visible light with PDs adequate for high rate and operation in magnetic field
 - these PDs are also good candidates for low-momentum imaging Cherenkov counters as DIRCs and aerogel RICHes, where only visible light can be detected

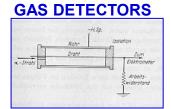


DOMAIN OF POTENTIAL APPLICATIONS

- A compact RICH is a MUST for the hermetic detectors at the EIC (now approved project in USA)
- Compact RICHes can enlarge the physics reach of circular e+e- colliders (FCC-ee, CepC)
- and, then, all gaseous RICHes
- establishing either LAPPDs or SiPM arrays as sensor for Cherenkov imaging applications → beneficial to all RICH detector, also those requiring the detection of visible light:
 - DIRCs (EIC, PANDA @ FAIR)
 - Aerogel RICHes (EIC, AMBER, ALICE, LHCb)

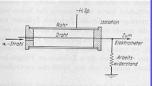


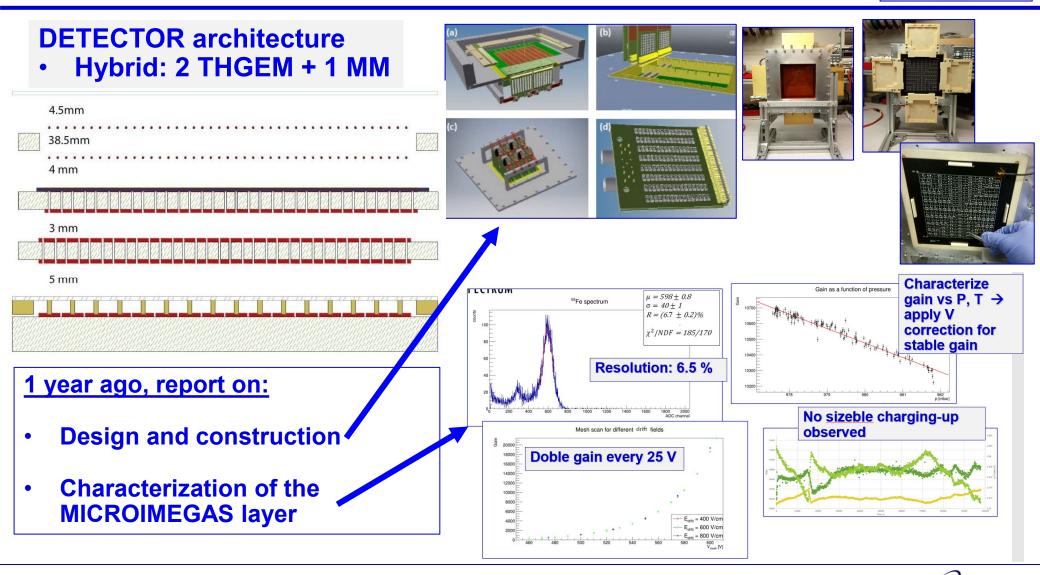
- The R&D activity is dedicated to developments for the detection of single photoelectrons \rightarrow 3 R&D lines :
 - MPGD-based PDs (INFN-TS, Charles U., USTC) 1.
 - Increasing the space resolution by the miniaturization of the pad-sizes
 - Coupling the PDs with novel low-noise FE electronics: VMM3
 - Improved detector architectures including, for instance, double mesh MICROMEGAS
 - Complete with an optimized prototype (deliverable, month 44)
 - visible light PDs insensitive to magnetic field (INFN-BA, INFN-BO, INFN-TS, 2. USTC, INCOM)
 - Qualify Si PMs for single photoelectron detection in imaging devices
 - Qualify LAPPDs for single photoelectron detection in imaging devices
 - **Comparative assessment by simulations using as input the photosensor** 3. performance as from R&D lines 1. and 2. (INFN-BA, INFN-TS)



REPORT Second year of activity (April 2022- March 2023)

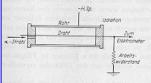
AIDAinnova annual meeting

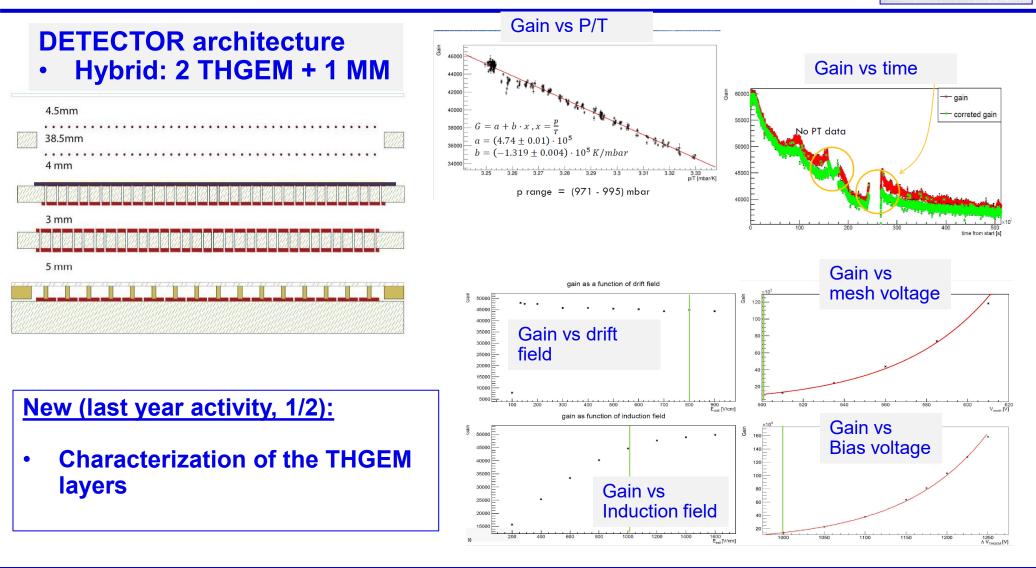

- The R&D activity is dedicated to developments for the detection of single photoelectrons → 3 R&D lines
 - 1. MPGD-based PDs (INFN-TS, Charles U., USTC)
 - Increasing the space resolution by the miniaturization of the pad-sizes
 - Coupling the PDs with novel low-noise FE electronics: VMM3
 - Improved detector architectures including, for instance, double mesh MICROMEGAS
 - Complete with an optimized prototype (deliverable, month 44)
 - 2. visible light PDs insensitive to magnetic field (*INFN-BA*, *INFN-BO*, *INFN-TS*, *USTC*, *INCOM*)
 - Qualify Si PMs for single photoelectron detection in imaging devices
 - Qualify LAPPDs for single photoelectron detection in imaging devices
 - 3. <u>Comparative assessment by simulations</u> using as input the photosensor performance as from R&D lines 1. and 2. *(INFN-BA, INFN-TS)*



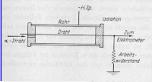
MPGD-based PDs

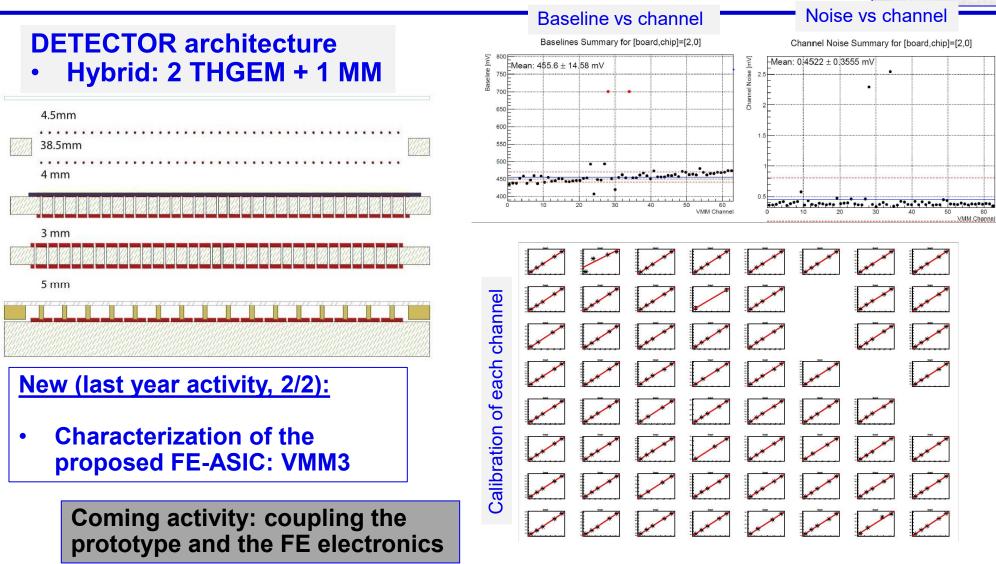
GAS DETECTORS

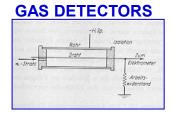



AIDAinnova annual meeting

MPGD-based PDs

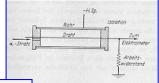





MPGD-based PDs

GAS DETECTORS

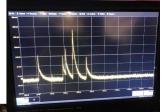
- The R&D activity is dedicated to developments for the detection of single photoelectrons → 3 R&D lines
 - 1. MPGD-based PDs (INFN-TS, Charles U., USTC)
 - Increasing the space resolution by the miniaturization of the pad-sizes
 - Coupling the PDs with novel low-noise FE electronics: VMM3
 - Improved detector architectures including, for instance, double mesh MICROMEGAS
 - Complete with an optimized prototype (deliverable, month 44)
 - 2. visible light PDs insensitive to magnetic field (*INFN-BA*, *INFN-BO*, *INFN-TS*, *USTC*, *INCOM*)
 - Qualify Si PMs for single photoelectron detection in imaging devices
 - Qualify LAPPDs for single photoelectron detection in imaging devices
 - 3. <u>Comparative assessment by simulations</u> using as input the photosensor performance as from R&D lines 1. and 2. *(INFN-BA, INFN-TS)*


AIDAinnova annual meeting

SiPMs

GAS DETECTORS

Establish SiPMs for single photon detection in Cherenkov imaging devices $\leftarrow \rightarrow$ limit the dark noise rate due to radiation damage

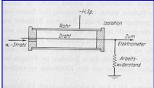

S	
Sipm	1
S.	1
cial udy	1
lerc stu	
ommerci 1der stud	
noC	

	board	sensor	uCell (µm)	V (V)	PDE (%)	DCR (kHz/mm²)	window	notes	
		S13360 3050VS	50	53	40	55	silicone	legacy model Calvi et. al	PHOTON
-	HAMA1	S13360 3025VS	25	53	25	44	silicone	legacy model smaller SPAD	
-		S14160 3050HS	50	38	50		silicone	newer model lower V _{tel}	
	HAMA2	S14160 3015PS	15	38	32	78	silicone	smaller SPADs radiation hardness	BUSINESS
	OFNICI	MICROFJ 30035	35	24.5	38	50	glass	different producer and lower V _{bd}	ON.
SENSL	MICROFJ 30020	20	24.5	30	50	glass	the smaller SPAD version	ON Semiconductor	
	всом	AFBR S4N33C013	30	27	43	111	glass	commercially available FBK-NUVHD	. BROADCOM

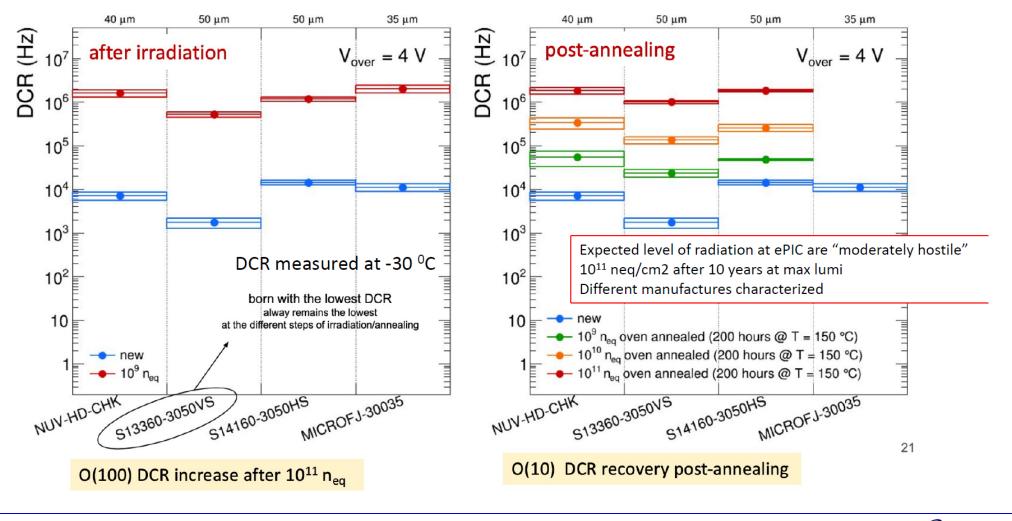
I-V curves and DCR at different temperatures +20 C -10 C -30 C

- Memmert climatic chamber
- Keithley source meter
- Keysight power supply
- Cividec amplifier
- Lecroy oscilloscope

Systemati characterization at different temperatures before and after irradiation



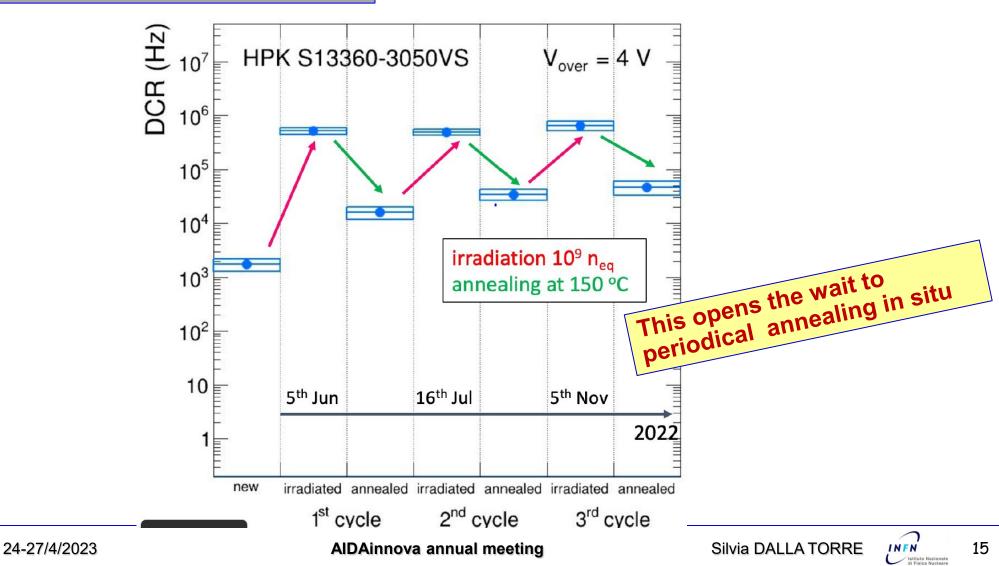
AIDAinnova annual meeting

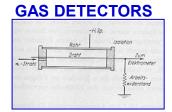


SiPMs

GAS DETECTORS


NEW: preliminary results




GAS DETECTORS

NEW: preliminary results

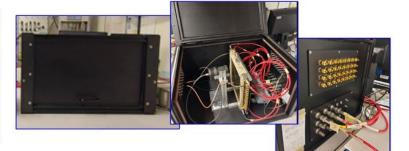
- The R&D activity is dedicated to developments for the detection of single photoelectrons → 3 R&D lines
 - 1. MPGD-based PDs (INFN-TS, Charles U., USTC)
 - Increasing the space resolution by the miniaturization of the pad-sizes
 - Coupling the PDs with novel low-noise FE electronics: VMM3
 - Improved detector architectures including, for instance, double mesh MICROMEGAS
 - Complete with an optimized prototype (deliverable, month 44)

2. visible light PDs insensitive to magnetic field (*INFN-BA*, *INFN-BO*, *INFN-TS*, *USTC*, *INCOM*)

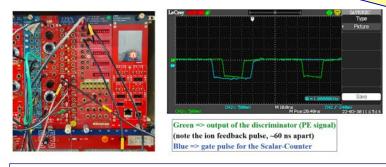
- Qualify Si PMs for single photoelectron detection in imaging devices
- Qualify LAPPDs for single photoelectron detection in imaging devices

3. <u>Comparative assessment by simulations</u> using as input the photosensor performance as from R&D lines 1. and 2. *(INFN-BA, INFN-TS)*

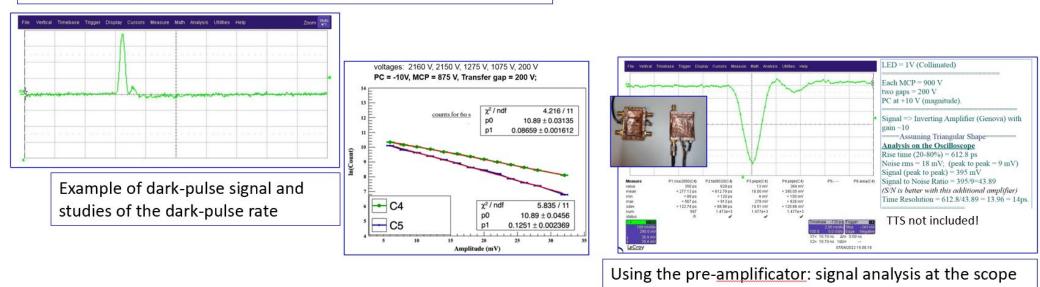
AIDAinnova annual meeting


LAPPDs

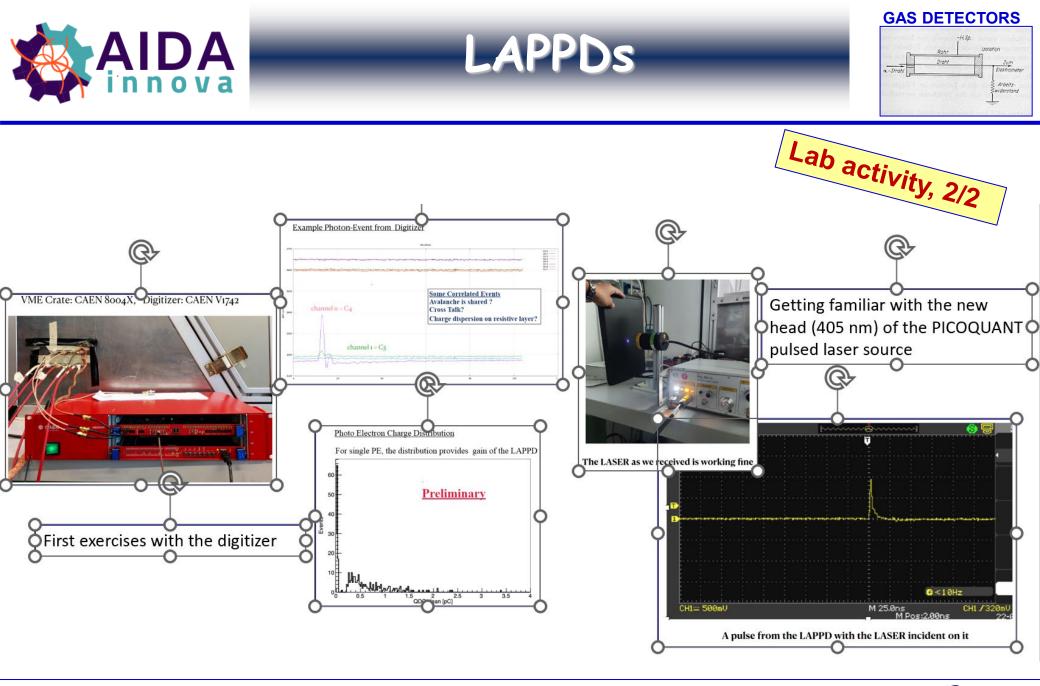
GAS DETECTORS



Extremely initial 1 year ago, ~ all in the last year

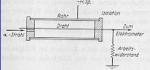


Initial dark-box; then, optimized dark-box modified to improve lighttightness and operative needs



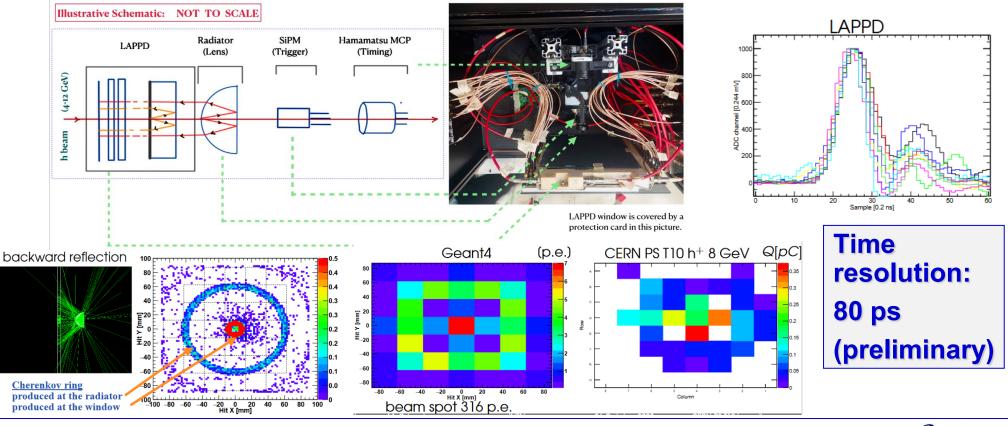
Single photoelectron condition using a pulse LED

tituto Nazionale 17



INFN Istituto Nazionale di Fisica Nucleare

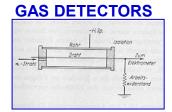
LAPPDs for RICH counters


GAS DETECTORS

October test beam at CERN PS to measured LAPPD <u>time resolution</u> generating Cherenkov photon in a quartz radiator

Not optimized LAPPD :

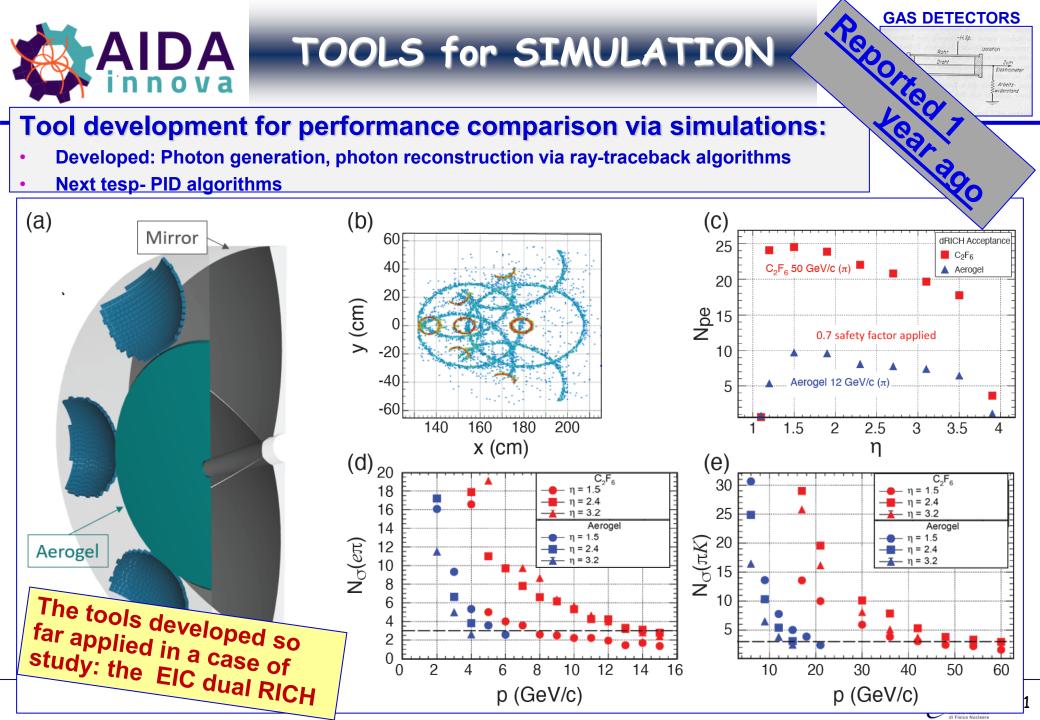
pore diam. 20 $\mu\text{m},$ anode substrate: 5mm glass, PC voltage: 50 V

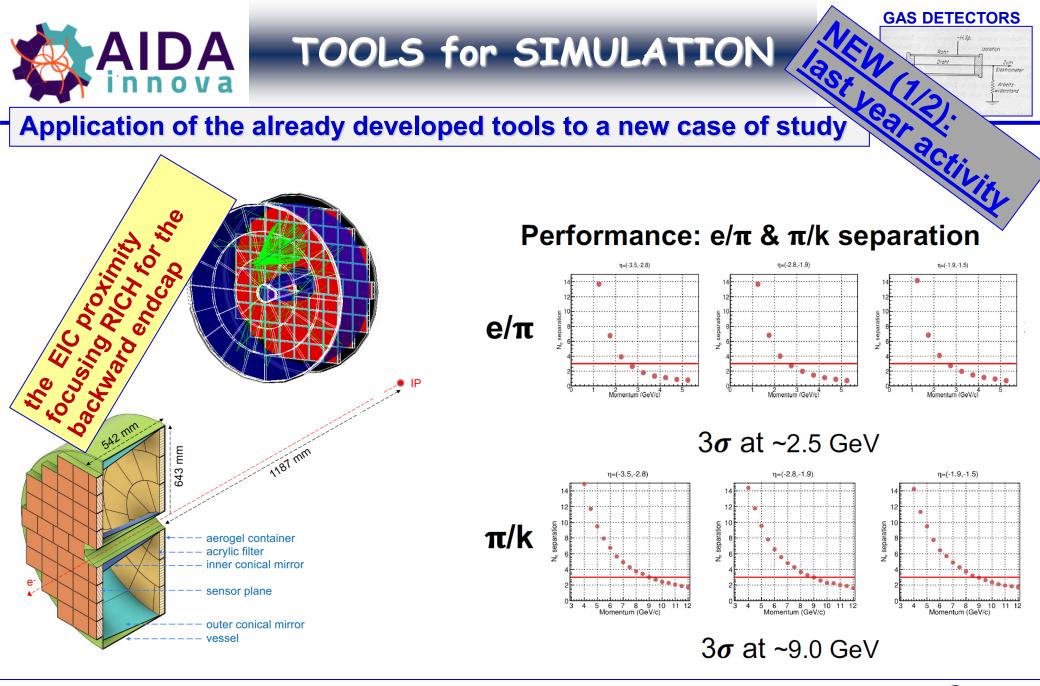


24-27/4/2023

AIDAinnova annual meeting

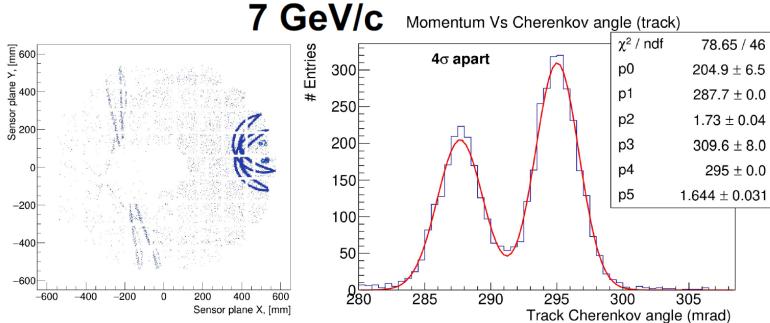
19





- The R&D activity is dedicated to developments for the detection of single photoelectrons → 3 R&D lines
 - 1. MPGD-based PDs (INFN-TS, Charles U., USTC)
 - Increasing the space resolution by the miniaturization of the pad-sizes
 - Coupling the PDs with novel low-noise FE electronics: VMM3
 - Improved detector architectures including, for instance, double mesh MICROMEGAS
 - Complete with an optimized prototype (deliverable, month 44)
 - 2. visible light PDs insensitive to magnetic field (*INFN-BA*, *INFN-BO*, *INFN-TS*, *USTC*, *INCOM*)
 - Qualify Si PMs for single photoelectron detection in imaging devices
 - Qualify LAPPDs for single photoelectron detection in imaging devices
 - 3. <u>Comparative assessment by simulations</u> using as input the photosensor performance as from R&D lines 1. and 2. *(INFN-BA, INFN-TS)*

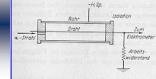
AIDAinnova annual meeting


AIDAinnova annual meeting

22

NEW TOOL: PID- tool based on χ^2

Effectiveness demonstrated identifying particles in extreme ring-overlap cases



- $\succ \pi$ and kaon generated in same event.
- > particle ϕ angle chosen to have overlapping rings at border pseudorapidity
- > Event-based χ^2 model has a **95% accuracy** separating multi-particles

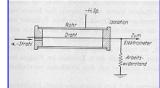
SUMMARIZING

SUBSTANTIAL PROGRESS IN ALL R&D LINES

OF THE TASK 7.5.1

24-27/4/2023

AIDAinnova annual meeting


Silvia DALLA TORRE

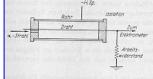
The R&D activity

GAS DETECTORS

BACKUP

24-27/4/2023

AIDAinnova annual meeting


Silvia DALLA TORRE

The R&D activity

WP7 – task 7.5

D7.1	Characterisation of small size MRPC prototypes for fast timing and high rates	7.2	INFN-BO	R	PU	M86
D7.2	Validation of the eco-friendly gas mixtures for RPCs at GIF++	7.2	INFN-LNF	R	PU	M45
D7.3	Production with industry of small-size prototypes of μ-RWELLs	7.3	INFN-LNF	DEM	PU	M30
D7.4	A small-scale TPC prototype (~10 l) with hybrid charge/optical readout and a hydrogen rich gas mixture with high scintillation yield	7.4	RHUL	DEM	PU	M46
D7.5	Small-size prototype of a MPGD single photon detector for compact RICHs	7.5	INFN-TS	DEM	PU	M44

No MILESTONES for WP7 – task 7.5