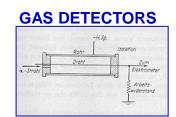



# WP7 - TASK 7.5.1

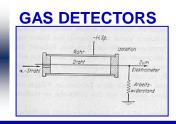



## **TASK 7.5.1**

# Photon detectors for hadron particle identification at high momenta

A bridge between gaseous detectors and PID world

Silvia Dalla Torre on behalf of the Task 7.5.1 team






# INTRODUCTARY REMINDER



# AIDA WP7-TASK 7.5, WHO?

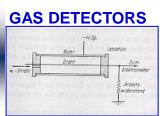


|                           | Participating<br>Institute/Compagny | Туре                  | Country  | Main contact person | e-mail                         |
|---------------------------|-------------------------------------|-----------------------|----------|---------------------|--------------------------------|
| EU beneficiaries          | Charles University                  | University            | Czech R. | Miroslav Finger     | Miroslav.Finger@cern.ch        |
|                           | INFN, Bari                          | D                     | Italy    | Giacomo Volpe       | giacomo.volpe@ba.infn.it       |
|                           | INFN, Bologna                       | Research<br>Institute | Italy    | Roberto Preghenella | Roberto.Preghenella@bo.infn.it |
|                           | INFN, Trieste                       | mstitute              | Italy    | Silvia Dalla Torre  | Silvia.DallaTorre@ts.infn.it   |
|                           |                                     |                       |          |                     |                                |
| non-EU                    | USTC                                | University            | China    | Jianbei Liu         | liujianb@ustc.edu.cn           |
| no financial obbligations | Incom, Inc.                         | Company               | USA      | Michel J. Minot     | mjm@incomusa.com               |

#### Task Leader: S. Dalla Torre, INFN-Trieste

#### **About the non-EU participants**

#### University of Science and Technology of China (USTC), Hefei, China


 USTC will be contributing to the development of the compact RICH concept by a complementary approach to the gaseous MPGD-based photon detection, developing and prototyping a photo-sensor making use of two grid layers.

#### **INCOM, Inc., Charlton, USA**

INCOM has built a first-version LAPPDs (large-size Micro Channel Plate-Photo Multipliers, MCP-PMT)
prototype and provided it for evaluation by the INFN collaborators. In a second step, a revised prototype,
taking into account the indications of the evaluation process, will be designed, built and provided to
collaborators for a second evaluation campaign.

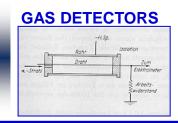


# AIDA The scientific motivations



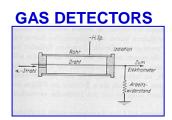
#### **MOTIVATIONS**

- the challenging requirements of a high-momentum RICH counter in a collider environment with hermetic detector architecture:
  - high momenta → gaseous radiator for h-PID → low Cherenkov photon rate per radiator unit length
  - collider hermetic detector -> short radiator namely a compact RICH
  - collider hermetic detector  $\rightarrow$  operation in magnetic field and in high-rate environment
- Two concrete options:
- a windowless RICH with gaseous PDs operated with the radiator gas itself -> enlarge the number of photons by moving the wavelength detection window to extremely VUV photon (~120 nm)
- (ii) making use of the wide band of the visible light with PDs adequate for high rate and operation in magnetic field
  - these PDs are also good candidates for low-momentum imaging Cherenkov counters as DIRCs and aerogel RICHes, where only visible light can be detected


# AIDA POTENTIAL APPLICATIONS

#### DOMAIN OF POTENTIAL APPLICATIONS

- A compact RICH is a MUST for the hermetic detectors at the EIC (now approved project in USA)
- Compact RICHes can enlarge the physics reach of circular e+e- colliders (FCC-ee, CepC)
- and, then, all gaseous RICHes
- establishing either LAPPDs or SiPM arrays as sensor for Cherenkov imaging applications → beneficial to all RICH detector, also those requiring the detection of visible light:
  - **DIRCs** (EIC, PANDA @ FAIR)
  - Aerogel RICHes (EIC, AMBER, ALICE, LHCb)



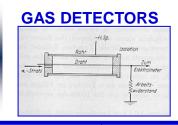

# Task 7.5.1, R&D activity



- The R&D activity is dedicated to developments for the detection of single photoelectrons → 3 R&D lines :
  - 1. MPGD-based PDs (INFN-TS, Charles U., USTC)
    - Increasing the space resolution by the miniaturization of the pad-sizes
    - Coupling the PDs with novel low-noise FE electronics: VMM3
    - Improved detector architectures including, for instance, double mesh MICROMEGAS
    - Complete with an optimized prototype (deliverable, month 44)
  - 2. visible light PDs insensitive to magnetic field (INFN-BA, INFN-BO, INFN-TS, USTC, INCOM)
    - Qualify Si PMs for single photoelectron detection in imaging devices
    - Qualify LAPPDs for single photoelectron detection in imaging devices
  - 3. <u>Comparative assessment by simulations</u> using as input the photosensor performance as from R&D lines 1. and 2. (*INFN-BA*, *INFN-TS*)



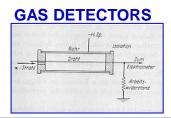



# REPORT

Second year of activity

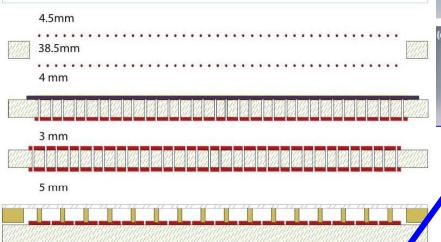
(April 2022 - March 2023)




# Task 7.5.1, R&D activity

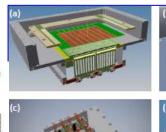


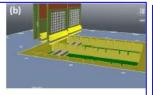
- The R&D activity is dedicated to developments for the detection of single photoelectrons → 3 R&D lines
  - 1. MPGD-based PDs (INFN-TS, Charles U., USTC)
    - Increasing the space resolution by the miniaturization of the pad-sizes
    - Coupling the PDs with novel low-noise FE electronics: VMM3
    - Improved detector architectures including, for instance, double mesh MICROMEGAS
    - Complete with an optimized prototype (deliverable, month 44)
  - 2. visible light PDs insensitive to magnetic field (INFN-BA, INFN-BO, INFN-TS, USTC, INCOM)
    - Qualify Si PMs for single photoelectron detection in imaging devices
    - Qualify LAPPDs for single photoelectron detection in imaging devices
  - 3. <u>Comparative assessment by simulations</u> using as input the photosensor performance as from R&D lines 1. and 2. (INFN-BA, INFN-TS)



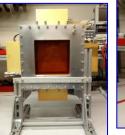

# MPGD-based PDs

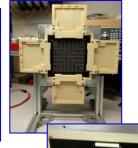



#### **DETECTOR** architecture

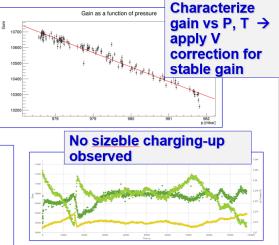

• Hybrid: 2 THGEM + 1 MM




#### 1 year ago, report on:

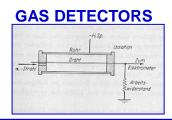

- Design and construction
- Characterization of the MICROIMEGAS layer





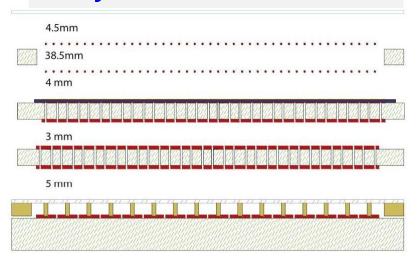




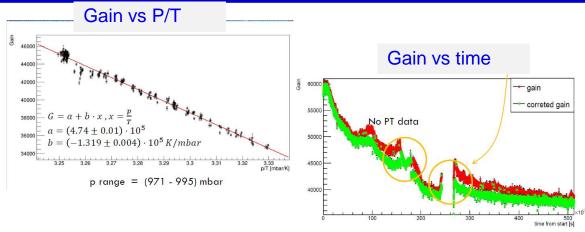


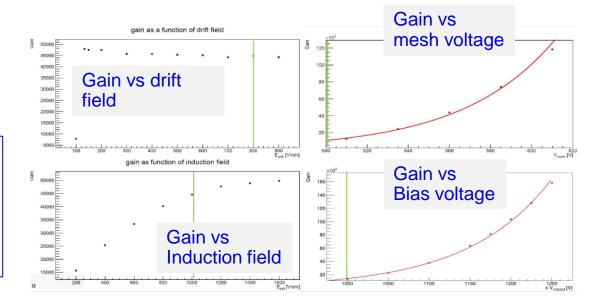



# MPGD-based PDs

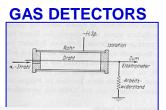



#### **DETECTOR** architecture


Hybrid: 2 THGEM + 1 MM

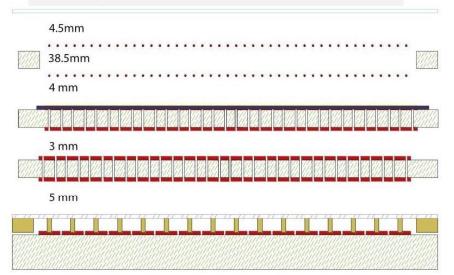





Characterization of the THGEM layers







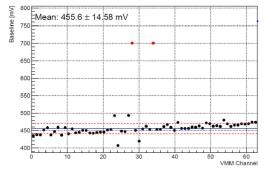

# MPGD-based PDs



#### **DETECTOR** architecture

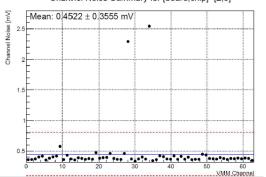
Hybrid: 2 THGEM + 1 MM



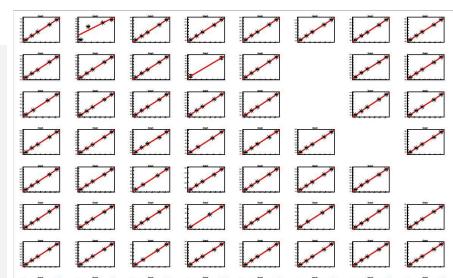

#### New (last year activity, 2/2):

 Characterization of the proposed FE-ASIC: VMM3

Coming activity: coupling the prototype and the FE electronics

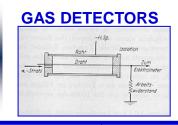

#### Baseline vs channel

Baselines Summary for [board,chip]=[2,0]




#### Noise vs channel

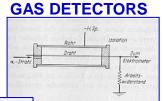
Channel Noise Summary for [board,chip]=[2,0]





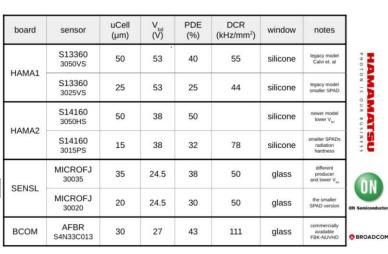






# Task 7.5.1, R&D activity



- The R&D activity is dedicated to developments for the detection of single photoelectrons → 3 R&D lines
  - 1. MPGD-based PDs (INFN-TS, Charles U., USTC)
    - Increasing the space resolution by the miniaturization of the pad-sizes
    - Coupling the PDs with novel low-noise FE electronics: VMM3
    - Improved detector architectures including, for instance, double mesh MICROMEGAS
    - Complete with an optimized prototype (deliverable, month 44)
  - 2. visible light PDs insensitive to magnetic field (INFN-BA, INFN-BO, INFN-TS, USTC, INCOM)
    - Qualify Si PMs for single photoelectron detection in imaging devices
    - Qualify LAPPDs for single photoelectron detection in imaging devices
  - 3. <u>Comparative assessment by simulations</u> using as input the photosensor performance as from R&D lines 1. and 2. (INFN-BA, INFN-TS)

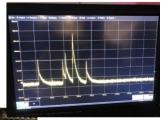



#### SiPMs



#### Establish SiPMs for single photon detection in Cherenkov imaging devices ←→ limit the dark noise rate due to radiation damage

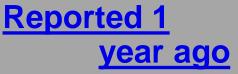
SiPMs Commercial study under

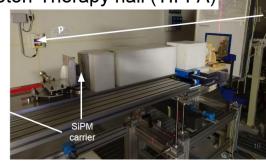






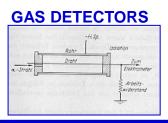

I-V curves and DCR at different temperatures +20 C -10 C -30 C


- Memmert climatic chamber
- Keithlev source meter
- Keysight power supply
- Cividec amplifier
- Lecrov oscilloscope

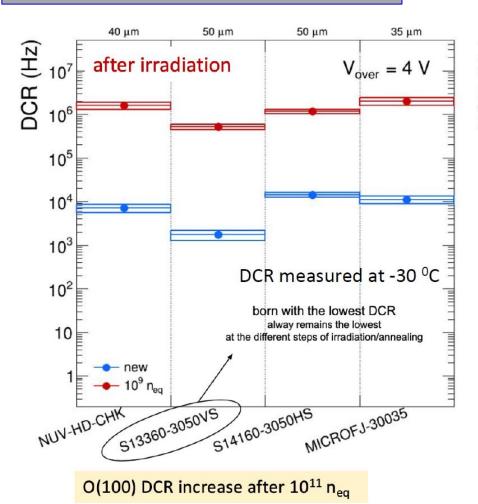


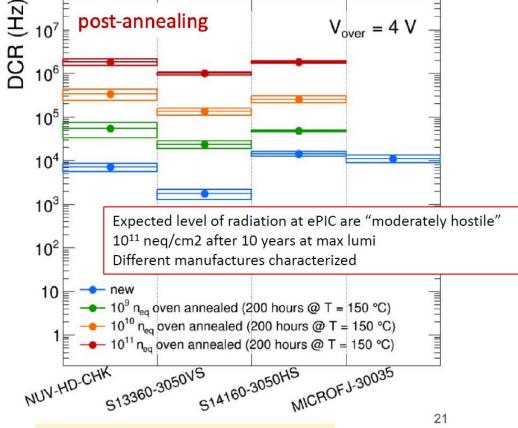






Irradiation at Trento Proton-Therapy hall (TIFPA)






#### SiPMs



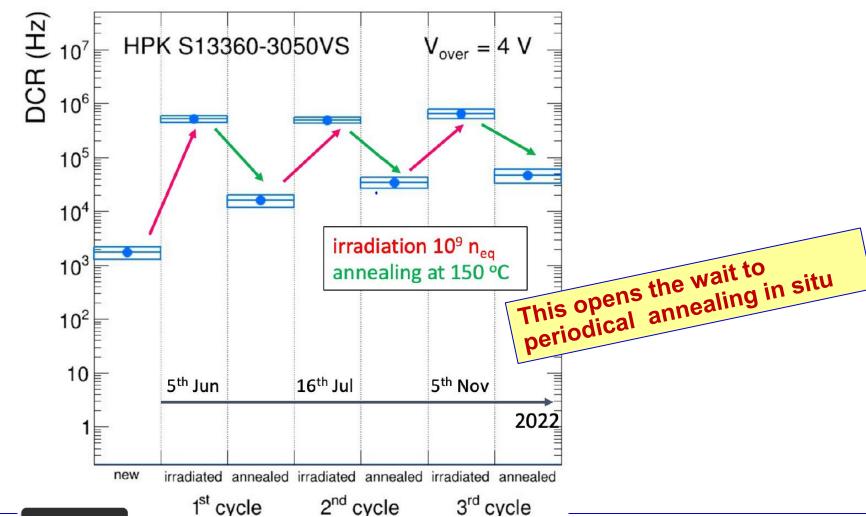
#### **NEW:** preliminary results





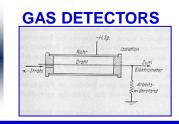

50 μm

35 µm


50 µm



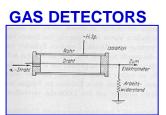
## SiPMs




#### **NEW:** preliminary results

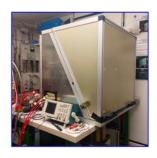


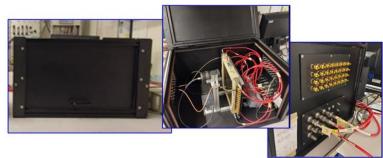



# Task 7.5.1, R&D activity



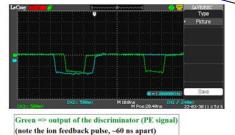
- The R&D activity is dedicated to developments for the detection of single photoelectrons → 3 R&D lines
  - 1. MPGD-based PDs (INFN-TS, Charles U., USTC)
    - Increasing the space resolution by the miniaturization of the pad-sizes
    - Coupling the PDs with novel low-noise FE electronics: VMM3
    - Improved detector architectures including, for instance, double mesh MICROMEGAS
    - Complete with an optimized prototype (deliverable, month 44)
  - 2. visible light PDs insensitive to magnetic field (INFN-BA, INFN-BO, INFN-TS, USTC, INCOM)
    - Qualify Si PMs for single photoelectron detection in imaging devices
    - Qualify LAPPDs for single photoelectron detection in imaging devices
  - 3. <u>Comparative assessment by simulations</u> using as input the photosensor performance as from R&D lines 1. and 2. (INFN-BA, INFN-TS)





# **LAPPDs**



#### Extremely initial 1 year ago, ~ all in the last year

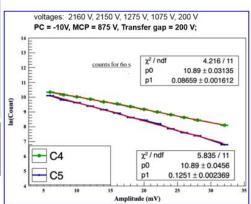

Lab activity, 1/2

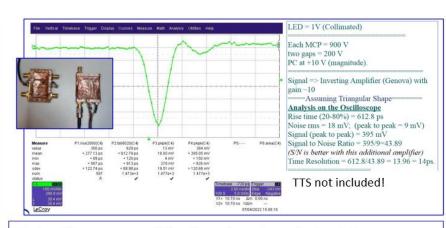




Initial dark-box; then, optimized dark-box modified to improve lighttightness and operative needs





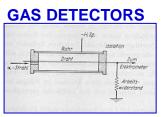


Blue => gate pulse for the Scalar-Counter

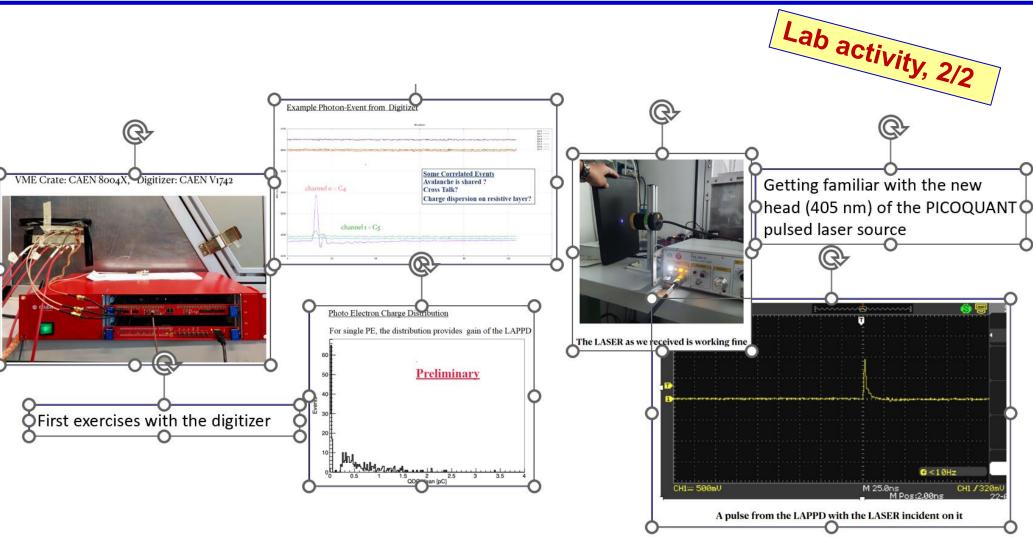
Single photoelectron condition using a pulse LED



Example of dark-pulse signal and studies of the dark-pulse rate

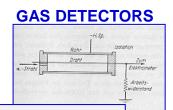






Using the pre-amplificator: signal analysis at the scope



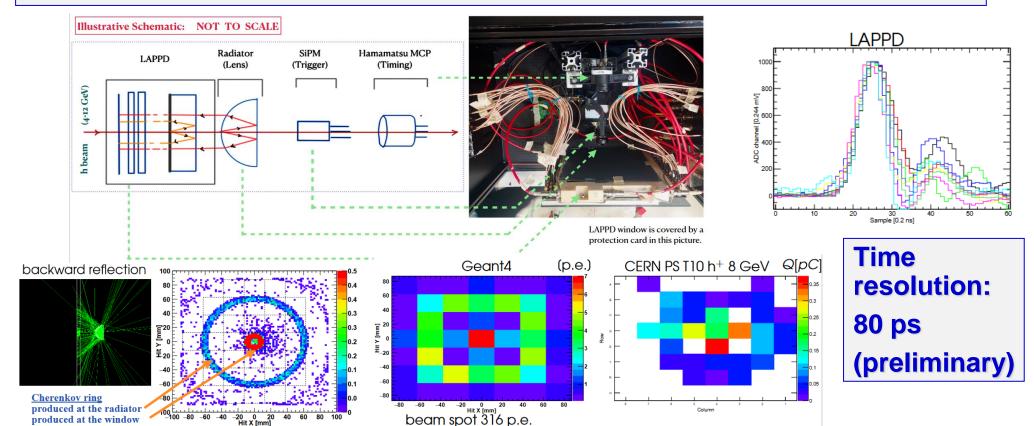



# LAPPDs



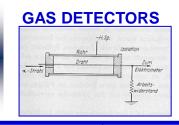





#### LAPPDs for RICH counters



October test beam at CERN PS to measured LAPPD <u>time resolution</u> generating Cherenkov photon in a quartz radiator


**Not optimized LAPPD:** 

pore diam. 20  $\mu$ m, anode substrate: 5mm glass, PC voltage: 50 V

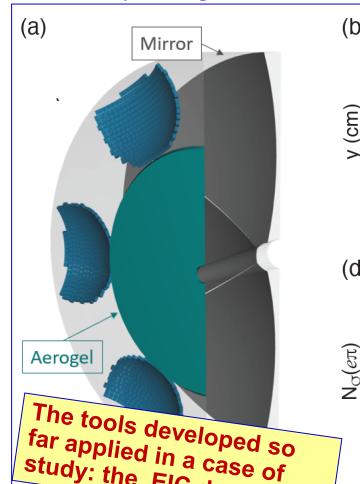




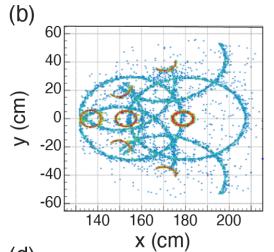
# Task 7.5.1, R&D activity

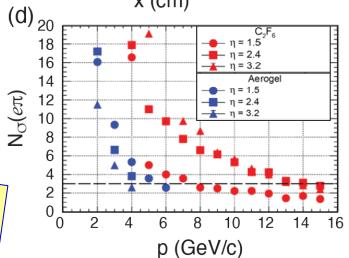


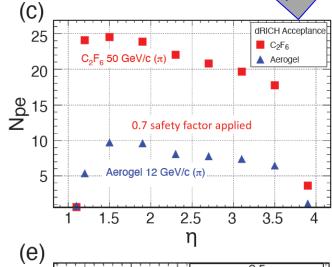
- The R&D activity is dedicated to developments for the detection of single photoelectrons → 3 R&D lines
  - 1. MPGD-based PDs (INFN-TS, Charles U., USTC)
    - Increasing the space resolution by the miniaturization of the pad-sizes
    - Coupling the PDs with novel low-noise FE electronics: VMM3
    - Improved detector architectures including, for instance, double mesh MICROMEGAS
    - Complete with an optimized prototype (deliverable, month 44)
  - 2. visible light PDs insensitive to magnetic field (INFN-BA, INFN-BO, INFN-TS, USTC, INCOM)
    - Qualify Si PMs for single photoelectron detection in imaging devices
    - Qualify LAPPDs for single photoelectron detection in imaging devices
  - 3. <u>Comparative assessment by simulations</u> using as input the photosensor performance as from R&D lines 1. and 2. (INFN-BA, INFN-TS)

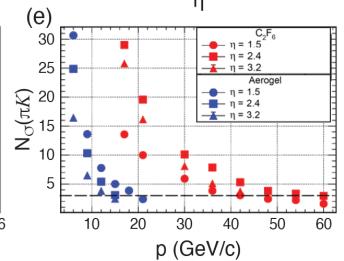



## TOOLS for SIMULATION





#### Tool development for performance comparison via simulations:

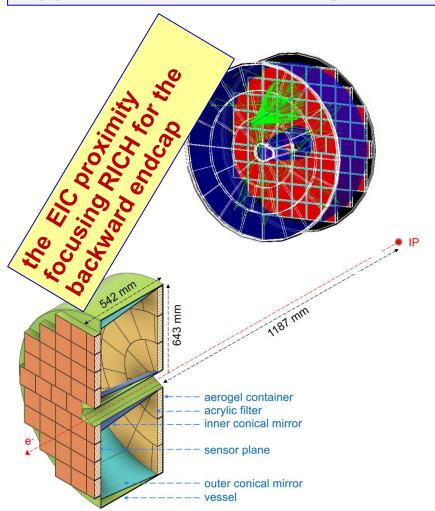

- Developed: Photon generation, photon reconstruction via ray-traceback algorithms
- **Next tesp- PID algorithms**



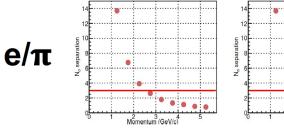

far applied in a case of study: the EIC dual RICH

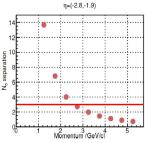


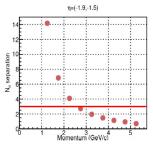






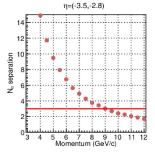



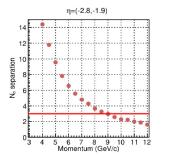


# TOOLS for SIMULATION


Application of the already developed tools to a new case of study



#### Performance: $e/\pi \& \pi/k$ separation







 $3\sigma$  at ~2.5 GeV

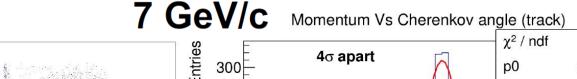


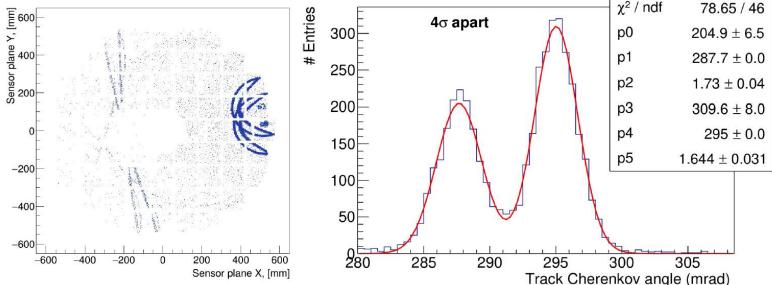






 $3\sigma$  at ~9.0 GeV

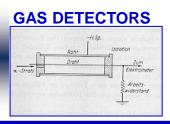




## TOOLS for SIMULATION



**NEW TOOL:** PID- tool based on  $\chi^2$ 

Effectiveness demonstrated identifying particles in extreme ring-overlap cases

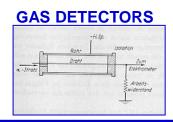





- $\triangleright \pi$  and kaon generated in same event.
- > particle φ angle chosen to have overlapping rings at border pseudorapidity
- $\triangleright$  Event-based  $\chi^2$  model has a **95% accuracy** separating multi-particles



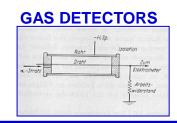
## SUMMARIZING




#### SUBSTANTIAL PROGRESS IN ALL R&D LINES

OF THE TASK 7.5.1




# The R&D activity



# **BACKUP**



# The R&D activity



#### WP7 - task 7.5

| Characterisation of small size MRPC prototypes for fast timing and high rates                                                        | 7.2                                                                                                                                                                                                                                                                                                                                                                              | INFN-BO                                                                                                                                                                                                                                                                               | R                                                         | PU                                                            | M86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Validation of the eco-friendly gas<br>mixtures for RPCs at GIF++                                                                     | 7.2                                                                                                                                                                                                                                                                                                                                                                              | INFN-LNF                                                                                                                                                                                                                                                                              | R                                                         | PU                                                            | M45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Production with industry of small-size prototypes of μ-RWELLs                                                                        | 7.3                                                                                                                                                                                                                                                                                                                                                                              | INFN-LNF                                                                                                                                                                                                                                                                              | DEM                                                       | PU                                                            | M30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| A small-scale TPC prototype (~10 l) with hybrid charge/optical readout and a hydrogen rich gas mixture with high scintillation yield | 7.4                                                                                                                                                                                                                                                                                                                                                                              | RHUL                                                                                                                                                                                                                                                                                  | DEM                                                       | PU                                                            | M46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Small-size prototype of a MPGD<br>single photon detector for compact<br>RICHs                                                        | 7.5                                                                                                                                                                                                                                                                                                                                                                              | INFN-TS                                                                                                                                                                                                                                                                               | DEM                                                       | PU                                                            | M44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                      | prototypes for fast timing and high rates  Validation of the eco-friendly gas mixtures for RPCs at GIF++  Production with industry of small-size prototypes of μ-RWELLs  A small-scale TPC prototype (~10 l) with hybrid charge/optical readout and a hydrogen rich gas mixture with high scintillation yield  Small-size prototype of a MPGD single photon detector for compact | Production with industry of small-size prototypes of μ-RWELLs  A small-scale TPC prototype (~10 l) with hybrid charge/optical readout and a hydrogen rich gas mixture with high scintillation yield  Small-size prototype of a MPGD single photon detector for compact  7.2  7.3  7.4 | Prototypes for fast timing and high rates   7.2   INFN-BO | Prototypes for fast timing and high rates   7.2   INFN-BO   R | prototypes for fast timing and high rates       7.2       INFN-BO       R       PU         Validation of the eco-friendly gas mixtures for RPCs at GIF++       7.2       INFN-LNF       R       PU         Production with industry of small-size prototypes of μ-RWELLs       7.3       INFN-LNF       DEM       PU         A small-scale TPC prototype (~10 l) with hybrid charge/optical readout and a hydrogen rich gas mixture with high scintillation yield       7.4       RHUL       DEM       PU         Small-size prototype of a MPGD single photon detector for compact       7.5       INFN-TS       DEM       PU |

#### No MILESTONES for WP7 - task 7.5