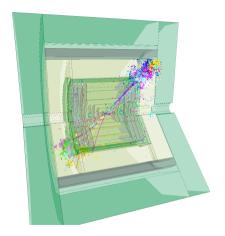


Key4hep and DDDigi Status from CERN

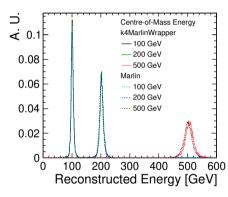

André Sailer

CERN-EP-SFT

AIDAinnova Annual Meeting April 24–27, 2023 Valencia

- 1 Key4hep Status and Plans
- 2 DDDigi Status and Plans
- 3 Conclusion

Key4hep Status and Plans


Key4hep Related Developments in the Last Year

See also slides from Thomas

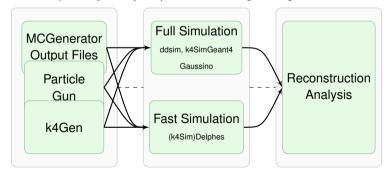
Infrastructure: Spack and Validation Framework

- Spack
 - Providing releases and nightly builds to CVMFS
 - Maintain and scale out the Key4hep builds (Juan Carceller)
 - ► Releases and nightly builds for different operating systems
- Implement validation framework to monitor changes (Juan Carceller)
 - Ensure we spot regressions immediately
 - Requires also building and testing multiple inter-dependent PRs together

Total Reconstructed Energy from Di-Quark events in CLIC_o3_v14 using k4MarlinWrapper or only Marlin.

Gaudi and k4FWCore Developments

- New fellow starting to work on "Extend and develop support for heterogeneous resources in Gaudi" (funded by CERN EP RnD)
- Gaudi Data Service for podio::Frame (Benedikt Hegner)
- Improving Documentation of Gaudi or k4FWCore in view of algorithm migration


This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA no 101004761.

DD4hep Geometry and Simulations

- The simulations can be run in a stand-alone mode using the output from a Generator as input
- Work to integrate LHCb's Gaussino to replace framework integration on going (Graeme Stewart)

 Ideally re-use existing components from DDG4, k4SimGeant4
- In all cases, the following step of (high level) reconstruction or analysis should be usable in the same way
- Moved lcgeo Github repository to key4hep/k4Geo, waiting for migration of FCCDetectors

Reconstruction Developments

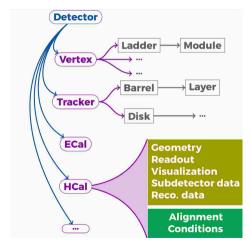
- Implement track fitting with ACTS, different fitting approaches (Gaussian Sum Filter), especially in view of electron reconstruction (Leonhard Reichenbach)
 - Apply for CLD tracking and detector optimisation studies
- Integrate track reconstruction monitoring into validation framework
- Developments around Particle Flow Clustering and Pandora (Swathi Sasikumar)
 - Implement DDGaudiPandora interface between DD4hep Geometry and Pandora in the Gaudi framework, successor for DDMarlinPandora
 - Integrate Jet Energy Reconstruction monitoring into validation framework
 - Continue development to apply Pandora Clustering for LAr Calorimeter (IDEA-LAr, GranuLAr)
- Integration of k4CLUE (Erica Brondolin)

Algorithm Migration to Gaudi

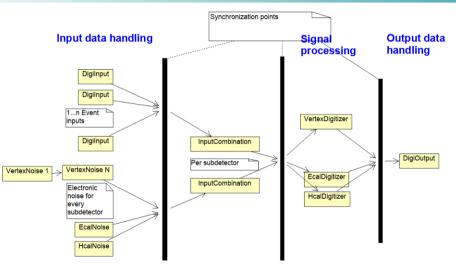
- Some constraints in iLCSoft algorithms prevent reproducible multi-threading
 - static variables; random seeding
 - Need to migrate (some) algorithms to Gaudi
 - ★ Also to reduce memory consumption (requirement from Muon Collider studies)
- Implemented a random seed service for Gaudi: thread-safe, reproducible
- Migrated first algorithm from iLCSoft to Gaudi
 - Together with a summer student (Violeta Vicente Cantero) (https://indico.cern.ch/event/1180962/)
 - Need much better documentation, or this is expert task only
- This years summer student project for some processor, e.g. Overlay (Juan Carceller, Nazar Bartosik (Muon Collider))

DDDigi

Material provided by Markus Frank



- Transformation of energy deposits from simulation to "real-world" detector response
- Tree-like hierarchy of largely independent elements
 - Experiment
 - Subdetectors (Vertex, ECal....)
 - Segmented entities ladder, barrel, endcap, layers, modules, etc.
- Benefit from independent segments → Invitation for parallelization
- Handle interaction overlays and spill-over
- Handle noise, dead channels



This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA no 101004761.

DDDigi: Schematic of Data Pipelines

DDDigi: Achievements

- Generic multi-threaded framework to handle described data pipelines based on TBB
- Simulation input modules: DDG4 (native), EDM4hep
 - ► Allow to move IP per input source
 - Attenuate signal per collision & subdetector for spillover
- Digitization output modules: DDDigi (native), EDM4hep
- Modules to
 - Manage the handling of deposits from single subdetectors
 - Generic handling of deposit sub-sets according to detector segmentation: useful for subdetectors with high response
 - Combine deposits from interaction overlays and spill-over
 - Smear energy deposit in calorimeters
 - Smear the hit location/proper time in trackers
 - Zero suppression/threshold handling

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA no 101004761.

DDDigi: Implementation Issue

- DDDigi is a "turn key system"
 - ► Input: DD4hep detector description
 - Configuration of digitization from component pallette using python (like DDG4)
- The entire digitization itself is a module
 - Integrate to existing software buses (python, Gaudi)
 - ► Chained execution: DDG4 \rightarrow DDDigi \rightarrow Reco . . .
 - Idealistic approach, but should technically feasible
- But: No users found so far
 - Missing drivers for required functionality

Conclusions

Conclusions/Main Goals for the Year

- Continuous Validation
- Simulation consolidation
- ACTS tracking
- Extending use of Pandora Particle Flow Clustering
- Gaudi implementation of algorithms
- Documentation improvements
- PS: I did not mention work done as part of FCC studies

This work benefited from support by the CERN Strategic R&D Programme on Technologies for Future Experiments (CERN-OPEN-2018-006).

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement no. 101004761.

Thank you for your attention!