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Integration of ML models

Integration of Machine Learning (ML) models into standard simulation toolkit (GEANT4)
e Demonstration of ML inference in C++ framework

e available in GEANT4 11.0 release, but can be also used with 10.7
e Incorporation of few libraries: ONNX Runtime, LWTNN, Torch

e Implemented as a Geant4 example Par04, includes a trained model: Variational Autoencoder (VAE)
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Integration of Machine Learning (ML) models into standard simulation toolkit (GEANT4)
e Demonstration of ML inference in C++ framework

e available in GEANT4 11.0 release, but can be also used with 10.7
e Incorporation of few libraries: ONNX Runtime, LWTNN, Torch

o Torch was integrated during the last AIDAinnova hackathon, thanks to everyone involved! (CERN,
DESY, UniMan)
o available in GEANT4 11.1 release

e Implemented as a Geant4 example Par04, includes a trained model: Variational Autoencoder (VAE)
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Integration of ML models

Integration of Machine Learning (ML) models into standard simulation toolkit (GEANT4)

e Demonstration of ML inference in C++ framework

e available in GEANT4 11.0 release, but can be also used with 10.7

e Incorporation of few libraries: ONNX Runtime, LWTNN, Torch

o Torch was integrated during the last AIDAinnova hackathon, thanks to everyone involved! (CERN,
DESY, UniMan)
o available in GEANT4 11.1 release

e Implemented as a Geant4 example Par04, includes a trained model: Variational Autoencoder (VAE)

e Described in AIDAinnova milestone report
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Calo Challenge and Open Data Detector

CaloChallenge

e A challenge compares a variety of models on the same datasets (3
datasets with increasing complexity)

e Workshop organized in Frascati at the end of May will conclude the
cahllenge and compare the submitted contributions.

calochallenge.github.io/homepage



https://calochallenge.github.io/homepage

Calo Challenge and Open Data Detector

calochallenge.github.io/homepage

CaloChallenge

e A challenge compares a variety of models on the same datasets (3
datasets with increasing complexity)

e Workshop organized in Frascati at the end of May will conclude the
cahllenge and compare the submitted contributions.
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e A benchmark detector for algortihm development
e For fast simulation purposes will provide ECal + HCal data

e Joint effort of tracking+calo, sim-+reco activities
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Calo Challenge and Open Data Detector

calochallenge.github.io/homepage

CaloChallenge

e A challenge compares a variety of models on the same datasets (3
datasets with increasing complexity)

e Workshop organized in Frascati at the end of May will conclude the
cahllenge and compare the submitted contributions.

Open Data Detector
e A benchmark detector for algortihm development
e For fast simulation purposes will provide ECal + HCal data
e Joint effort of tracking+calo, sim-+reco activities

Both topics will presented in two CHEP 2023 presentations.
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MetaHEP

MetaHEP shows how meta-learning can aid application of ML models for fast shower simulation.
e Reuse an existing and a pretrained model to new detectors.

e A pre-trained model can adapt quickly to new detectors.
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MetaHEP

MetaHEP shows how meta-learning can aid application of ML models for fast shower simulation.
e Reuse an existing and a pretrained model to new detectors.
e A pre-trained model can adapt quickly to new detectors.

e Substantially decreases time needed to design and train a model.
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MetaHEP shows how meta-learning can aid application of ML models for fast shower simulation.

e Shifts focus from development of custom ML models tied to detector readout to integration of
energy deposition from a regular grid to the detector readout.




MetaHEP

MetaHEP shows how meta-learning can aid application of ML models for fast shower simulation.

e Shifts focus from development of custom ML models tied to detector readout to integration of
energy deposition from a regular grid to the detector readout.

e Existing VAE model produces good results for almost all shower observables, but cell energy
distribution remains a challenge (blurry images) — this model may not be accurate for high
granularity calorimeters
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MetaHEP

MetaHEP shows how meta-learning can aid application of ML models for fast shower simulation.

e Shifts focus from development of custom ML models tied to detector readout to integration of
energy deposition from a regular grid to the detector readout.

e Existing VAE model produces good results for almost all shower observables, but cell energy
distribution remains a challenge (blurry images) — this model may not be accurate for high
granularity calorimeters

e Work presented at ACAT 2022
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Development of new ML model

e Generative ML model with transformers:

o Vector Quantised VAE (VQ-VAE) plus an autoregressive (AR) model - exploring sequences in showers
o Diffusion models - at early design stage, no results yet



https://indico.cern.ch/event/1220966/

Development of new ML model

e Generative ML model with transformers:

o Vector Quantised VAE (VQ-VAE) plus an autoregressive (AR) model - exploring sequences in showers
o Diffusion models - at early design stage, no results yet



https://indico.cern.ch/event/1220966/

Development of new ML model

e Generative ML model with transformers:

o Vector Quantised VAE (VQ-VAE) plus an autoregressive (AR) model - exploring sequences in showers
o Diffusion models - at early design stage, no results yet

e Collaboration of CERN and IBM Research
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e Preliminary studies were discussed at the dedicated workshop at CERN
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Development of new ML model

e Generative ML model with transformers:

o Vector Quantised VAE (VQ-VAE) plus an autoregressive (AR) model - exploring sequences in showers
o Diffusion models - at early design stage, no results yet

o Collaboration of CERN and IBM Research
Preliminary studies were discussed at the dedicated workshop at CERN
o Generative model will be presented at CHEP 2023
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Development of new ML model

« VQVAE was first ntroduced in the “Neural Discrete Representation Learning’ papet in 2017 by DeepMind
o tis a combination o a variational autoencoder (1 lear lower representation o the input data) and then
VQ-VAE discreiizes this representation using a veclor quanization siep to map i o a finte set of discrele codes

oz discrete latent variable
«  Latent embedding space e £ R"”
«  N:number of codebook vectors to represent a shower
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Development of new ML model

©  VQ-AE was first introduced in the “Neural Discrete Representation Learning” paper in 2017 by DeepMind
VQ VAE Itis a combination of & variational autoencoder (o learn lower representation of the input data) and then

discretizes this representation using a veclor quantization step to map it to a finite set of discrete codes
2 discrete latent variable

Latent embedding space e £ R™

N: number of codebook vectors to represent a shower

K : vocabulary size (K>N Vocabulary

D: dimensionality of the codebook vector e,
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Summary and outlook

On-going work in all activities:

o Integration of MetaHEP into LHC experiments

o Started with the LHCb experiment thanks to Michal Mazurek (CERN), first integration into Gaussino,
currently working on implementation to the LHCb calorimeter
o On-going work on testing wihin Athena for ATLAS
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Summary and outlook

On-going work in all activities:

o Integration of MetaHEP into LHC experiments
o Started with the LHCb experiment thanks to Michal Mazurek (CERN), first integration into Gaussino,
currently working on implementation to the LHCb calorimeter
o On-going work on testing wihin Athena for ATLAS

o Work on the accurate generative foundation model for fast shower calorimeter

(transfromers based)
e Conclusion of Calo Challenge, summarising the activities and comparing models

o Finalisation of the Open Deta Detector calorimeter implementation and production
of the dataset




