

Anna Zaborowska

Dalila Salamani, Piyush Raikwar, Witold Pokorski

Fast simulation, CERN activities

24.04.2023

This work benefited from support by the CERN Strategic R&D Programme on Technologies for Future Experiments (CERN-OPEN-2018-006)

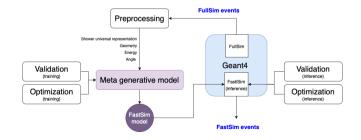
This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 101004761

Integration of ML models

Integration of Machine Learning (ML) models into standard simulation toolkit (GEANT4)

- Demonstration of ML inference in C++ framework
- available in GEANT4 11.0 release, but can be also used with 10.7
- Incorporation of few libraries: ONNX Runtime, LWTNN, Torch

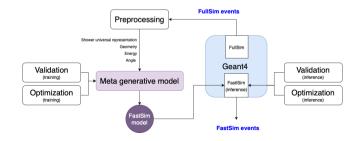
Implemented as a Geant4 example Par04, includes a trained model: Variational Autoencoder (VAE)



Integration of ML models

Integration of Machine Learning (ML) models into standard simulation toolkit (GEANT4)

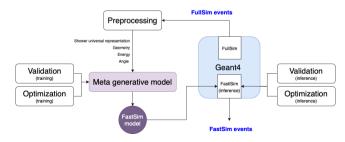
- Demonstration of ML inference in C++ framework
- available in GEANT4 11.0 release, but can be also used with 10.7
- Incorporation of few libraries: ONNX Runtime, LWTNN, Torch
 - Torch was integrated during the last AIDAinnova hackathon, thanks to everyone involved! (CERN, DESY, UniMan)
 - $\circ~$ available in $\operatorname{GEANT4}$ 11.1 release
- Implemented as a Geant4 example Par04, includes a trained model: Variational Autoencoder (VAE)



Integration of ML models

Integration of Machine Learning (ML) models into standard simulation toolkit (GEANT4)

- Demonstration of ML inference in C++ framework
- available in GEANT4 11.0 release, but can be also used with 10.7
- Incorporation of few libraries: ONNX Runtime, LWTNN, Torch
 - Torch was integrated during the last AIDAinnova hackathon, thanks to everyone involved! (CERN, DESY, UniMan)
 - $\circ~$ available in $\operatorname{GEANT4}$ 11.1 release
- Implemented as a Geant4 example Par04, includes a trained model: Variational Autoencoder (VAE)
- Described in AIDAinnova milestone report



Calo Challenge and Open Data Detector

2/7

CaloChallenge

- A challenge compares a variety of models on the same datasets (3 datasets with increasing complexity)
- Workshop organized in Frascati at the end of May will conclude the cahllenge and compare the submitted contributions.

Calo Challenge and Open Data Detector

2/7

CaloChallenge

- A challenge compares a variety of models on the same datasets (3 datasets with increasing complexity)
- Workshop organized in Frascati at the end of May will conclude the cahllenge and compare the submitted contributions.

Open Data Detector

- A benchmark detector for algortihm development
- For fast simulation purposes will provide ECal + HCal data
- Joint effort of tracking+calo, sim+reco activities

Calo Challenge and Open Data Detector

CaloChallenge

- A challenge compares a variety of models on the same datasets (3 datasets with increasing complexity)
- Workshop organized in Frascati at the end of May will conclude the cahllenge and compare the submitted contributions.

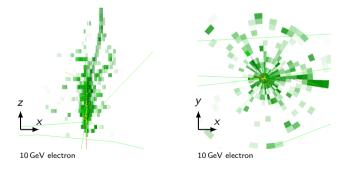
Open Data Detector

- A benchmark detector for algortihm development
- For fast simulation purposes will provide ECal + HCal data
- Joint effort of tracking+calo, sim+reco activities

Both topics will presented in two CHEP 2023 presentations.

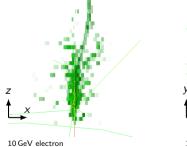
MetaHEP shows how meta-learning can aid application of ML models for fast shower simulation.

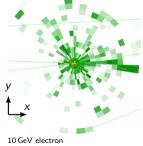
- Reuse an existing and a pretrained model to new detectors.
- A pre-trained model can adapt quickly to new detectors.



MetaHEP shows how meta-learning can aid application of ML models for fast shower simulation.

- Reuse an existing and a pretrained model to new detectors.
- A pre-trained model can adapt quickly to new detectors.
- Substantially decreases time needed to design and train a model.

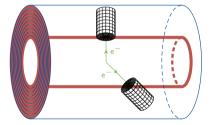




Training	Steps	Convergence time
Traditional	400	20 min
Traditional	3900	3h 15min
Adaptation	400	20.5 s
527 speed-up		

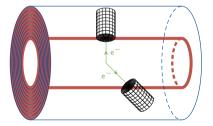
MetaHEP shows how meta-learning can aid application of ML models for fast shower simulation.

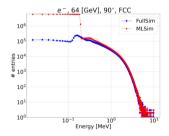
 Shifts focus from development of custom ML models tied to detector readout to integration of energy deposition from a regular grid to the detector readout.



MetaHEP shows how meta-learning can aid application of ML models for fast shower simulation.

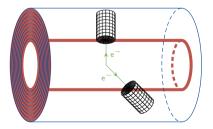
- Shifts focus from development of custom ML models tied to detector readout to integration of energy deposition from a regular grid to the detector readout.
- Existing VAE model produces good results for almost all shower observables, but cell energy distribution remains a challenge (blurry images) \rightarrow this model may not be accurate for high granularity calorimeters

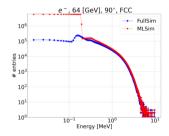




MetaHEP shows how meta-learning can aid application of ML models for fast shower simulation.

- Shifts focus from development of custom ML models tied to detector readout to integration of energy deposition from a regular grid to the detector readout.
- Existing VAE model produces good results for almost all shower observables, but cell energy distribution remains a challenge (blurry images) \rightarrow this model may not be accurate for high granularity calorimeters
- Work presented at ACAT 2022





• Generative ML model with transformers:

· Vector Quantised VAE (VQ-VAE) plus an autoregressive (AR) model - exploring sequences in showers

5/7

• Diffusion models - at early design stage, no results yet

• Generative ML model with transformers:

· Vector Quantised VAE (VQ-VAE) plus an autoregressive (AR) model - exploring sequences in showers

5/7

• Diffusion models - at early design stage, no results yet

- Generative ML model with transformers:
 - · Vector Quantised VAE (VQ-VAE) plus an autoregressive (AR) model exploring sequences in showers

5/7

- Diffusion models at early design stage, no results yet
- Collaboration of CERN and IBM Research

- Generative ML model with transformers:
 - · Vector Quantised VAE (VQ-VAE) plus an autoregressive (AR) model exploring sequences in showers

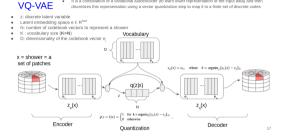
5/7

- Diffusion models at early design stage, no results yet
- Collaboration of CERN and IBM Research
- Preliminary studies were discussed at the dedicated workshop at CERN

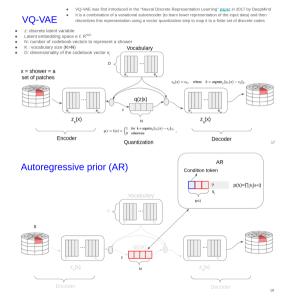
- Generative ML model with transformers:
 - $\circ\,$ Vector Quantised VAE (VQ-VAE) plus an autoregressive (AR) model exploring sequences in showers

5/7

- $\,\circ\,$ Diffusion models at early design stage, no results yet
- Collaboration of CERN and IBM Research
- Preliminary studies were discussed at the dedicated workshop at CERN
- Generative model will be presented at CHEP 2023



VQ-VAE was first introduced in the "Neural Discrete Representation Learning" paper in 2017 by DeepMind
It is a combination of a variational autoencoder (to learn lower representation of the input data) and then



- Integration of MetaHEP into LHC experiments
 - Started with the LHCb experiment thanks to Michal Mazurek (CERN), first integration into Gaussino, currently working on implementation to the LHCb calorimeter
 - On-going work on testing wihin Athena for ATLAS

- Integration of MetaHEP into LHC experiments
 - Started with the LHCb experiment thanks to Michal Mazurek (CERN), first integration into Gaussino, currently working on implementation to the LHCb calorimeter
 - On-going work on testing wihin Athena for ATLAS
- Work on the accurate generative foundation model for fast shower calorimeter (transfromers based)

- Integration of MetaHEP into LHC experiments
 - Started with the LHCb experiment thanks to Michal Mazurek (CERN), first integration into Gaussino, currently working on implementation to the LHCb calorimeter
 - $\circ~$ On-going work on testing wihin Athena for ATLAS
- Work on the accurate generative foundation model for fast shower calorimeter (transfromers based)
- Conclusion of Calo Challenge, summarising the activities and comparing models

- Integration of MetaHEP into LHC experiments
 - Started with the LHCb experiment thanks to Michal Mazurek (CERN), first integration into Gaussino, currently working on implementation to the LHCb calorimeter
 - $\circ~$ On-going work on testing wihin Athena for ATLAS
- Work on the accurate generative foundation model for fast shower calorimeter (transfromers based)
- Conclusion of Calo Challenge, summarising the activities and comparing models
- Finalisation of the Open Deta Detector calorimeter implementation and production of the dataset