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Overview

Particle Flow Algorithms (PFAs)
State-of-the-art reconstruction for HEP calorimeters and neutrino detectors

Research Groups (main contacts)

 Dual Readout Calorimeters:
e |. Vivarelli (Sussex), B. Di Micco (INFN Roma-3), S. Vallecorsa (CERN)

* APRIL, Algorithm for Particle Reconstruction @ ILC:
* G. Grenier (CNRS-IP21), V. Boudry (CNRS-LLR)

* DUNE Near Detector reconstruction:
 J. Marshall* & J. Back* (Warwick), M. Uchida & S. Dennis (Cambridge)

* WP12.5 co-conveners



Pandora Software Development Kit

https://github.com/PandoraPFA

A single clustering approach is unlikely to work for complex event topologies:

e Mix of track-like & shower-like clusters

e Use multi-algorithm approach using the Pandora SDK to build up events gradually:
e Each step is incremental - aim not to make mistakes (undoing mistakes is hard)
e Deploy more sophisticated algorithms as picture of event develops

e Algorithms: can use machine-learning methods & detector physics knowledge
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https://github.com/PandoraPFA
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Work in progress

Overview of the Particle Flow Project

@ The aim of the project is to build a Neural Network based algorithm that, from a given collection of energy deposits in the

calorimeter, is able to completely reconstruct a jet in the detector and maximise the energy resolution of the dual read-out calorimeter

Workflow
Geant4 simulation of a jet
Extract particle info at the input Extract calorimeter info: fiber

layer: position, momentum, position, fiber type, collected
particle type light by the fiber

NN based particle identification: charged: et, g&, s, K%, p,
neutral: y, n¥, KIS, n, A.

Output: momenta of the particles and particle identification
(PID) weights

NN based jet reconstruction:

starting from particle lists, their momenta, and PID weight build a jet using
NN regression algorithm

Software Implementation

Input from detector simulation
(EDM4HEP) format

Reading using keydHEP code

Dumping algorithm, input variables
for NN training

|

NN training using Tensorflow
on CPU/GPU




NN training using Tensortlow on GPUs

4» Tensorflow, interfaced with Keras, is used to build and train a NN on GPUs
@ Inputs: energy and position of each hit in the shower generated by the impinging electron and recorded in both S&C fibres—> NN
input: 6 kinematic variables (E, x, 1, z, ¢, flag) times hit multiplicity

@ Two NN approaches tested

/ N

1. VGG-like architecture
2. VGG-like architecture & proto-clustering

DNN approach

CNN approach
1. 10 hidden layers architecture
2. 20 hidden layers architecture

@ Pro: fully exploits the fibres granularity in the calorimeter & Pro:
@ Cons: & Solves the memory issues—>able to exploit electrons
¢ Memory issues to process events in the full energy mnfo in the full energy range
spectrum (0-125 GeV) for input electrons @ Able to obtain also the angular resolution
Y Angular resolution not available & Cons:

¢ Further studies needed to improve the energy and
angular resolution results



DNN results & next steps

@ As a sanity check. we compared our energy resolution results with:

& A reference https://inspirehep.net/literature/1861660

< The energy resolution obtained simply summing up the energy deposits in the fibres (S&C)

@ The energy resolution improves if we double the NN layers and we keep constant the number of nodes

@ Issue: the NN performance is still worse than the standard reconstruction —> work in progress

@ Next steps: increase the statistics of the simulation &improve the NN performance testing other (CNN) architectures
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Preliminary results on electron energy resolution

CNN approach CNN approach
1. VGG-like architecture w/o proto-clustering 2. VGG-like architecture with proto-clustering
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@ 10k simulated electrons Hyperparameter optimisation:

applied on batch size & start learning rate
Batch Size = 64, Start Learning Rate = 10~

*Batch size: it is a number of samples processed before the model is updated

*Learning rate: it is a hyper-parameter used fo govern the pace at which
an algorithm updates or learns the values of a paramefer estimate



Preliminary results on electron angular resolution

@ Improvements observed
if a pro-clustering 1s
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Next Steps

@ Further explore the possibility to perform a clustering before of feeding the NN
< Using Pandora algorithms
@ Test alternative NN approaches. like GNN
@ Increase the number of electrons in the simulations
4 Perform analogous studies in the case of other input particles like pions and kaons
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Optimised APRIL PFA for hadronic jets

G. Grenier (CNRS-IP2l1), V. Boudry (CNRS-LLR)

oy
-
1P 21l

* Released software tools to generate samples for calibrating APRIL for the ILD:
https://github.com/SDHCAL/SDHCAL ILD prod

* Masters students’ 2022 summer internships on calibration:

» Dijet MC generator level jet energy resolution
o Finding energy ranges for photons & neutral hadrons to achieve accurate calibration

» Optimisation of SIW-ECAL energy resolution
o Comparing hit counting and energy sums, especially for low energy photons (< 10 GeV)

* CALICE test beam participation over 2022 summer
e SDHCAL beam test completed 28t Sept
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https://github.com/SDHCAL/SDHCAL_ILD_prod

Optimised APRIL PFA for hadronic jets

LT

APRIL PFA Have looked into calibration for ILD option 2

1)So far only ILD option 1 have been fully calibrated. Main change between the two are a
change in Hadronic Calorimeter (from analogue AHCAL to Ser*r'n—digita\ SDHCAL)

2)Have produced samples of qq, single muons, single gammas and single klongs
1) All samples have been reconstructed using ilcsoft and performing Pandora reconstruction with
PerfectPFA.

2) Issue : no charged PFO reconstructed in qq sample.

3)Using calibration procedure described in CalibrationPandoraAnalysisExplained.tex from
PandoraPFA/LCPandoraAnalysis/doc/ on github.com

1) Two steps method : first step calibrate the digitiser and second Pandora itself. First step out of
date.

2)Standard ilcsoft pandora assumes linear energy reconstruction for the hits : each hits has an
energy (attributed by the digitisation process) and cluster energy Is the sum of Its hits energy.
1) OK for ECAL and AHCAL.
2) Far from optimal for SDHCAL.
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Optimised APRIL PFA for hadronic jets
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Optimised APRIL PFA for hadronic jets

Pandora calibration for ILD option 2 single Klong:pfoEnergyTotal
1)Calibration for SDHCAL : doesn't look g 120
. : [ |
that good but closest inspection shows & [ single Klong:pfoEnergyTotal
S 100— : A
1) F N C|CE]F} is OK (see next < IdP) - N single Klong:pfoTargetsEnergyTotal s
= e e - -~ el he E | 1
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2) SDHCAL is correctly calibrated but -
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3)In the left plot, error bars represents the 20i
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single klongs. B L
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4) Next step - implement angle correction. Energy (GeV)
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Optimised APRIL PFA for hadronic jets

20 Gev single klongs.
SDHCAL Endcap SDHCAL Barrel

1)Particles fly perpendicularly to layer 1)Particles do not fly perpendicularly to
surfaces. layer surfaces.
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Optimised APRIL PFA for hadronic jets

* Assess PFA-only workflow from Marlin xml/processors for ILD Higgs MC samples

* Continue setting up APRIL for ILD option 2 (SDHCAL)

* Revive current “how-to-run” APRIL PFA used for ILD option 1 (AHCAL)
« Rémi Eté & Bo Li, old version of DDMarlinPandora

* Unresolved issue with using Pandora in ilcsoft, needs bug fix
* Include energy correction in Pandora-like PFA & check calibration
* Include APRIL in Pandora: DDMarlinPandora or other Key4Hep-Pandora interface?

* Explore adding time information in PFA & shower reco
e Standalone study looks promising (not yet with PandoraSDK)

* Develop tools to compare PFA results between algorithms
* PFO energy resolution, reco efficiency & purity

* Further develop AMSTER (reclustering for APRIL) and use it with PandoraSDK
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Reconstruction for the DUNE Near Detector (ND)

John Back & John Marshall (Warwick),
Steve Dennis, Jingyuan Shi, Melissa Uchida, Leigh Whitehead (Cambridge), Tingjun Yang (Fermilab),
Munera Alrashed (Kansas State), Richie Diurba & Anja Gauch (Bern), Aleena Rafique (Argonne)

ND LAr = 7x5 array of 1x1x3 m3 modules,
optically segmented LAr TPCs, 3D pixel readout
2x2 prototype: data taking during 2023

Using Pandora for reconstructing 2x2 data

“2x2 simulation challenge” underway
e Centrally produced multi-neutrino events
* larnd-sim digitisation applied to Geant4 (edep-sim) hits
 HDF5 format; decoded for Pandora input

3m

Expect ~50 v interactions per sec for 7x5 ND LAr
 LBNF 120 GeV, 1.2 MW proton beam on graphite target
* Secondary m—uv: 7.5x10'3 protons per beam “spill” (1.2 sec)




Multi-neutrino interactions reco: Slicing

Break up complex spills into independent v interactions: 1 slice= 1v
1. Group together hits into Particle Flow Objects (PFOs) without using vertices
2. Find main v vertex for each slice to improve PFOs

2 DUNE work in progress . DUNE work in progress DUNE work in progress
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2D projections of reconstructed PFOs, 1 colour = 1 slice

Looks reasonable, but needs improvement
Need to quantify performance using Pandora Hierarchy tools (developed by Andy Chappell, Warwick)
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2x2 simulation challenge example event

Several neutrino interactions
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DUNE work in progress
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Tracks appear “fuzzy”: few cm spread of hits along drift x
Caused by charge deposition affecting neighbouring pixels
DUNE ND calibration: smoothing algorithm in progress
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Pandora 3D ND reco developments

* Initial energy hits clustering performed using 3D coords

* Cluster merging and refinement
* Apply existing 2D algorithms to the 3D hit clusters
e Currently does not use y information (to be addressed)

* Clusters projected into 2D
e Use neutrino reco algorithms based on 2D projections (e.g. MicroBooNE)

* Create Particle Flow Objects
 Match 2D hits back to 3D
e Build final tracks and showers



Pandora reco of 2x2 simulation events

MicroBooNE Reconstruction

- DUNE workiin progress

“3D” ND Reconstruction
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Pandora reco of 2x2 simulation events

MicroBooNE Reconstruction “3D” ND Reconstruction
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Deep Learning Vertexing

* Trying out Deep Learning (DL) vertexing for DUNE ND
* Pandora MicroBooNE neutrino algorithms
e LArDLVertexing algorithm: trained for DUNE far detector (A Chappell)
* Reusing algorithm & parameters for DUNE ND: no retraining done yet

* Using 100k single v, interaction simulated events (no spills)

* Comparing ND reco performance with/without DL vertexing
* Original: MicroBooNE neutrino algorithms only
e DLVitx: MicroBooNE neutrino algorithms with DL vertexing
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Fraction of events

Fraction of events

v, events: reco — MC vertex residuals (log scale)
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Pandora DUNE ND summary

LArRecoND package created for reconstruction developments

Reconstruction for 2x2 LAr ND prototype
* Using data converted from HDF5 format files
e 2x2 simulation challenge
* Developing 3D methods

3D algorithms
* Initial 3D hit clustering
* Cluster merging: 2D projections, need changes to also use y coord
* Final tracks & showers: match 2D hits back to 3D

Deep learning vertexing
* Needs to be retrained for ND
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https://github.com/PandoraPFA/LArRecoND

summary

* Dual readout calorimeters
* NN jet reconstruction & PID
e TensorFlow, looking at other options (PyTorch?)

* APRIL

* Energy calibration
* Developing reco for SDHCAL (ILD option 2)
* Include APRIL in Pandora

* DUNE

* Near Detector reconstruction
e 2x2 LArTPC prototype, 3D info, slicing, deep learning vertexing
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