AIDA Innova Second Annual Meeting

Challenges for advanced mechanics and cooling in High Energy Physics

Corrado Gargiulo, Burkhard Schmidt

CERN EP-DT

Challenges for mechanics and cooling in HEP

Mechanics for tracker

Ceramic Microchannels

Mechanics for cryostats

Sealed flanges

Robotics

Confined space inspection

27/04/2023

Environment mapping

AIDA Innova | Second Annual meeting

Inspection and first intervention

EP R&D

Mechanics for tracker

Kapton pipes and CO₂

Challenge

Extend use of low-mass cold plate with embedded Kapton pipes from water leakless to evaporative CO₂

- Carbon cold plates production: with embedded Kapton and stainless-steel tubes (~ ID 2 mm & 1 mm)
- Cold plates thermal characterization: test setup/ procedure/ execution with IR camera and flow visualization with high-speed camera
- Validation of Kapton version for CO₂ : can be operated at high CO₂ pressures thermal performance ↓ (ΔT_{KAPTON-SS} ~5°); low material budget ↑ with respect to steel pipe

 Steel
 Kapton
 Kapton

 ID [mm]
 2.15
 1
 1.97(2.05)
 1.024 (1.024)

 WT [mm]
 0.51
 0.29
 0.17(0.032)
 0.076(0.025)

ALICE

Experimental setup for detector cooling R&D with mini- and micro-scale carbon dioxide evaporators at CERN http://cds.cern.ch/record/2748428

Build a PIPELESS coldplate with a vascular network system for liquid/air cooling

- Process investigation VaSC (Vaporization of Sacrificial Components)
 - 1. Modified PLA embedded in CFRP preform
 - 2. Co-cured with CFRP part
 - 3. Vaporization step after curing (Vacuum oven 200°C for 15h)
- **Different methods to produce PLA preform** Filaments, Pre-cut sheets, 3D print network
- Characterised to high pressure

Burst pressure: rectangular channels 0.7 mm height [0/90/90/0]s layup

AIDA Innova | Second Annual meet....

EP R&D

Carbon foam & Air cool

Challenge

Remove active liquid cooling and use air cooling -> Carbon foam acting as support & radiator

Carbon foam & Air cooling

Challenge

Remove active liquid cooling and use air cooling -> Carbon foam acting as support & radiator

Carbon foam & Air cooling

Challenge

Remove active liquid cooling and use air cooling -> Carbon foam acting as support & radiator

Produce Coldplate in ceramic material with printing technologies (NPJ* and LCM**)

*Nanoparticle Jetting Technology, Xjet., ** Lithography-based, Lithoz.

0.5

2mm

0.7

Ceramics advantages:

(CTE) matching with the silicon sensors (2-6 ppm/k)
Good thermal conductivity (12-200 W/m K)
Radiation hardness (>100 MGy for Al2O3)
Low outgassing
Arbitrary shape (real 3D envelope by 3d print)

AIDA Innova | Second Annual meeting

Holes diameter

1.0

Produce Coldplate in ceramic material with printing technologies (NPJ* and LCM**)

Large-scale 3D printed ceramic cold plate

key aspect specific to ceramics is the hightemperature sintering process (1500-1800 C) of the "green part"; this impacts the final accuracy of the part due to non-balanced thermoplastic expansion/contraction

1600% Magnification

Flatness ~0.787mm

use of the "green part" without sintering as the final material is also being considered

*** ALICE ITS2 OB sensing module

Modularity & Interconnection

Challenge

Reliable hydraulic and mechanical interconnection for modular cold plates

Hydraulic interface: Radial seal-based
 High pressure cooling systems (>20 MPa)
 Leak-tightness (He leak rate 10⁻¹⁰ mbarl/s)

Micro O-rings (NBR material)

AIDA Innova | Second Annual meeting

Reliable hydraulic and mechanical interconnection for modular cold plates

Retractable Vertex

Challenge

coldplate

27/04/20

Get close to the IP: Future retractable Vertex Detector in primary vacuum

Challenges: -Bent MAPS

See Corrado Gargiulo link

Bent MAPS

New Coolant < -45°C

Challenge

New environmental-friendly refrigerant -60 to -80°C (Current CO₂ coolant limit -45°C)

P.Petagna- link

AIDA Innova | Second Annual meeting

EP R&D

Mechanics for cryostats

Mechanics for cryostats

Challenge

27/04/2023

Carbon composite design to scope lighter cryostat with lower material budget in future experiments

HEP Detector Cryostats

Up to now, cryostat have been designed with SS316 and AI 5083 typically

Cryo-Tank Aerospace

Replacement of metal with Carbon could reduce material and thickness of future cryostats

Full-carbon composite Engineering Model

AIDA Innova | Second Annual meeting

16

Mechanics for cryostats

Challenge

Carbon could bring to 70% X₀ and 20% thickness saving

AIDA Innova | Second Annual meeting

Mechanics for cryostats

Challenge

Go to 1m³ demonstrator for Cryostat for LAr and Super-Conducting magnet

Cryostat Concept Demonstrator 1mD:

- Production of CFRP sandwich shell (multipiece structural inner shell)
- Support/Interfaces with LArCal and SC magnet
- Design of a double-cryostat for WP3 and WP4 demos
- Transition piece to connect metallic feedthroughs*

Test Campaign:

- He leak-tightness, 293-87 K
- LAr tightness, 3.5 bar
- Radiation Hardness (0.1 MGy)
- Mechanical Characterization of material (77 K)

BeamPipe Concept Demonstrator*, test campaign*

Design of:

- Full scale CFRP cryostat for LArCal and SC magnet (FCCee, FCChh)
- BeamPipe

EP R&D

Development of robotic platforms for motion in the detector environment

-Motion in the detector cavern ground
-Motion in confined and cluttered spaces
-Aerial motion for environmental mapping of the whole cavern

Inspection and **manipulation** payload design for the robotic platform

- -Inspection
- -Manipulation (Teleoperated)

Design of detector interfaces for robotic operation.

-Development of automated systems for detector opening closing insertion/extraction and maintenance

ROBTICS for HEP Experiments 0

Challen

robotic motion platforms for inspection and manipulation

Challenge

Identify a robotic platform that can move in cavern (GROUND)

VALVES CHECKING

Courtesy of ANYbotics

THERMAL **INSPECTIONS** MEASUREMENT

min: 29.9 C max: 57.1 C spot: 55.1 C

56.0

54.0 52.0 50.0 48.0 46.0 44.0 42.0 40.0 38.0 36.0 34.0

32.0

RADIATION

27/04/2023

Aerial motion for environmental mapping

Challenge

Identify a robotic platform that can move in cavern environment (AERIAL)

Control/ Propeller Camera/Payload

CONTROL ROOM (Ground Level) VIEW

21

Design of detector interfaces for robotic operation

Optimization of the connector design to be manipulated by a robot

Tests on the effective manipulation (both kinematics and dynamics)

Next steps

Air cooling based on **Carbon foam**

Pipeless Carbon cold plate with microvascular network

Carbon cold plate with embedded Kapton pipes for **CO2**

D X

Ceramic **3D printed** cold plates

Modularity & interconnection

Implementation into real detector

- Manage local air distribution for large scale application
- Validate sensor stability vs. gas speed
- **Experimental fluidic tests**
- Long-term fluid compatibility
- Apply planar interconnections
- Produce large-scale demonstrator
- Ensure absolute tube tightness (e.g. add coating)
- Long-term compatibility with CO₂
- More complex 3D shape for real detector
- Proposal for application in primary vacuum due to low outgassing (IRIS, LHCb Velo)
- Apply to different cold plate concepts
- Explore variants in metal/PEEK/HNBR for better radiation hardness and compatibility with CO₂

AIDA Innova | Second Annual meeting

Manufacturing process and material choice

Leak tightness to vacuum/ LAr

Leak tightness of dismountable carbon joints

Leak tightness Long term

Services Feed trough

- Filament winding for large scale and microcrack resistant resin system for Out of Autoclave
- Test campaign on demonstrators to validate liner-less design and resin system and process
- Develop Helicoflex/equivalent solution for large scale

Permeability and radiation effects

ex

Transition pieces between carbon and metallic feedthrough

AIDA Innova| Second Annual meeting

GROUND robotic platforms for motion in the detector environment

Aerial robotic platforms for motion in the detector environment

Detector interfaces for robotic operation

Develop of a **CERN-focused mobile platform** in collaboration with BE-CEM-MRO Develop **Platform Payloads** for inspection/manipulation

Improve Blimps control system Investigation of new motion possibilities Payload development, Autonomous Motion Self-Recharge Platform Development

Detector interfaces to **robotic arm** for handling (Exp. area, test beam, irradiation facilities)