

BRINGING THE POWER OF THE SUN TO EARTH

Overview of EU diagnostics for fusion experiments

on behalf of F4E Diagnostic Team

AIDA 2nd annual meeting Academia meets industry Valencia, 27 Apr 23

Outline of the talk

• Introduction. EU Diagnostics to ITER

'Port & Engineering' for Diagnostics integration

- Port integration
- Feedthrough & cables

'Non-Optical' Diagnostics

- Radial Neutron Camera
- Pressure Gauges
- Bolometers

'Optical' Diagnostics

- Collective Thomson Scattering
- Core plasma Thomson Scattering
- Core-plasma Charge Exchange
 Recombination Spectrometer
- Wide-Angle Viewing System

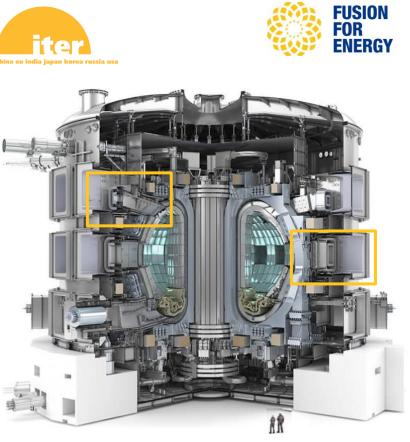
Thermonuclear fusion

E [keV]

- At high temperature gases are strongly ionized resulting in the formation of plasma, a mixture of electrons and ion species.
- The most probable reaction for thermonuclear fusion is considered through the use of Deuterium / Tritium gases

- 2 concepts exist: Magnetic Confinement & Inertial Fusion
- ITER is a TOKAMAK based on Magnetic Confinement

Plasma diagnostics in ITER



The purpose of diagnostics is to **measure plasma and first-wall parameters**. Diagnostics do not measure the parameters directly, but each parameter needs to be derived from the measured quantities (processing/interpretation).

The set of Diagnostics in ITER provides the measurements necessary to **control** fusion reaction, **protect** the machine, evaluate and **optimize** plasma performance and being able to further understand the **plasma physics**.

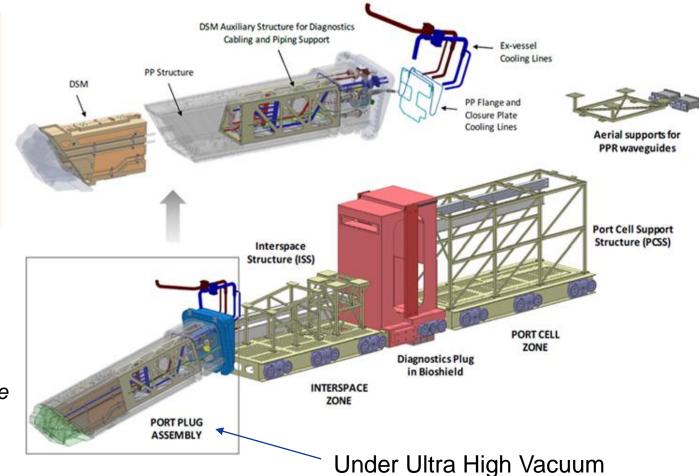
ITER will rely on approximately **50 different** diagnostic. **Europe** is responsible for roughly **25% of all Diagnostics in ITER.**

- ITER Plasma diagnostics face harsh conditions
 - Temperature (70-350 C)
 - High magnetic field (100 mT 5T)
 - Ultra High vacuum
 - Nuclear load (>E17 n/cm²; > MGy)
 - Heavy mechanical load >10 g in disruptions
- ITER Plasma diagnostics are installed in 'PORT'
- ITER is a nuclear facility with Tritium containment safety function

Port & Engineering for Diagnostics Integration

Academia meets industry – Overview of EU diagnostics for fusion experiments - 27th April 2023

European Diagnostics Port Integration


The European Diagnostic Ports Project comprises the integration of six ports:

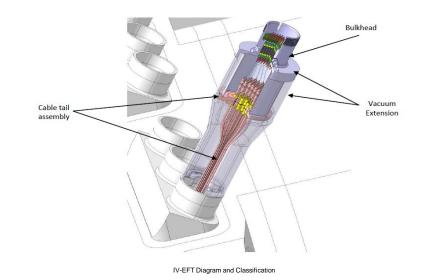
- Equatorial Ports (EP01, EP10)
- Upper Ports (UP01, UP03, UP10, UP17)

EU scope Port plug Inter-space Port Cell Diagnostic integration Testing in PPTF

EU diagnostic equipment tested & integrated on Port

Current delivery schedule 2024 to 2032

European Diagnostics Port Integration

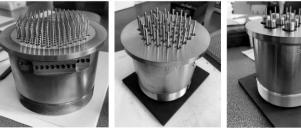


Current status Final design Closed

Successful prototyping of Diagnostic Shielding Module(DSM) manufacturing and joining.

Main manufacturing techniques

electrical, gas or water feedthroughs.


- Forging followed by heavy machining: for the DSM manufacturing,
- Conventional structures: configured by standard profiles steel welded together (low cobalt steel structures on ISS/PCSS).
- **B₄C pellets**: hot-pressed or pressureless sintered Boron Carbide.
- Laser Welding of individual lids for DSM cavities.
- Glass to Metal sealing (GTMS) with double vacuum barrier.
- Procurement Difficulties: Large amount of B4C and Low-Cobalt stainless steel.
- Only one port-plug test facility for all EU Port.

R&D & Testing irradiated GTMS & cables

Manufacture of three Bulkheads samples (double GTMS barrier) with different pin layouts (including coaxial pins)

BUIKHEAD TYPE D

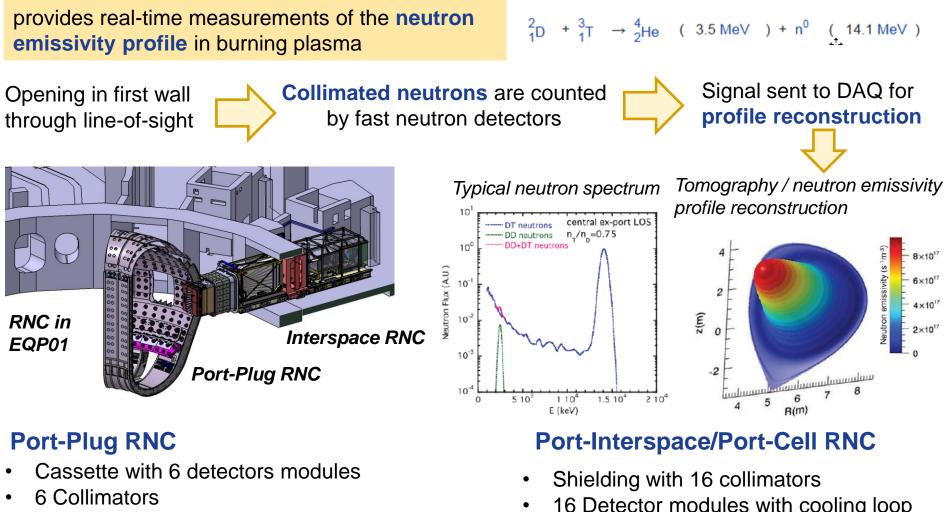
BULKHEAD TYPE P

Pin samples irradiated up to 2.24E17 n/cm² in fission reactor

- Passed Helium Leak Test <2.69 10⁻¹⁰ Pa.m³/s
- **Passed Electrical Test**: insulation resistance >10 M Ω ; dielectric strength at 1000VAC/50Hz
- Post-irradiation Examination in Hot-Cell does not reveal cracks or damages. Small surface roughness changes

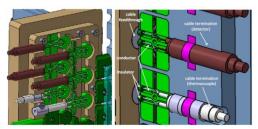
after irradiation before irradiation

- Range of mineral insulated cable & thermocouples (twisted pair, coaxial, quad terminated & compatible for UHV application and able to resist harsh conditions:
- High temperature (200 °C nominal, 500 °C peak) and
- Irradiation loads (ITER compatible)
- Excellent air tightness (2,69*10⁻¹⁰ Pa*m³/s)


'Non-Optical' Diagnostics

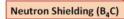
Academia meets industry – Overview of EU diagnostics for fusion experiments - 27th April 2023

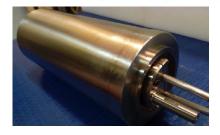
Radial Neutron Camera (RNC)


- **MI** Cables & Electrical feedthrough
- Beam dump & B4C shielding

- 16 Detector modules with cooling loop
- Shielded cabinets for preamplifiers
- I&C cubicles in diagnostic building

Radial Neutron Camera (RNC)

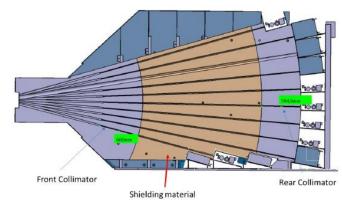

Port-Plug Subsystem


Feedthrough passed leak test 2.16E-9 mbar*l/s after 158 thermal cycling at 200 C

SVS feedthrough


Electrical Feedthroughs

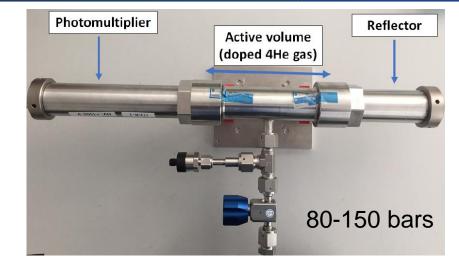
Collimators


Pure U238 for fast neutron detection Double wall multistage electrodes Backup of CVD diamond *Courtesy of Centronic*

50 micron CVD Diamond matrix Tested at 200/250 C

Port-Interspace Subsystem

- 17 T shielding block
- 16 lines of sight
- Plastic scintillator
- CVD Diamond Matrix
- He-4 scintillator (new)



Academia meets industry – Overview of EU diagnostics for fusion experiments - 27th April 2023

He-4 scintillator: a good robust candidate for fast neutron detection

- Fast neutron produces He recoil atom through high elastic cross-section scattering which ionizes the gas containing dopant that can scintillate
- Gamma-rays mainly interact with the electrons, which ionizes the gas but with less efficiently and with different light pulse characteristic

Good linearity & Gamma-rays rejection ! (but bulky detector)

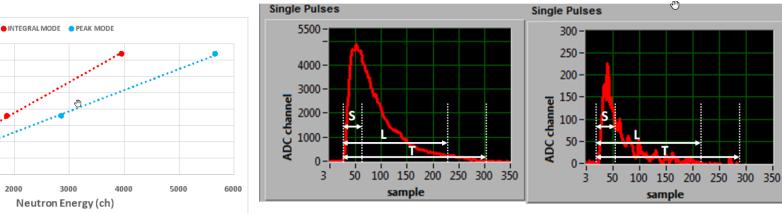
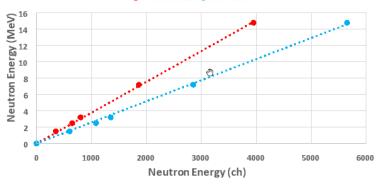
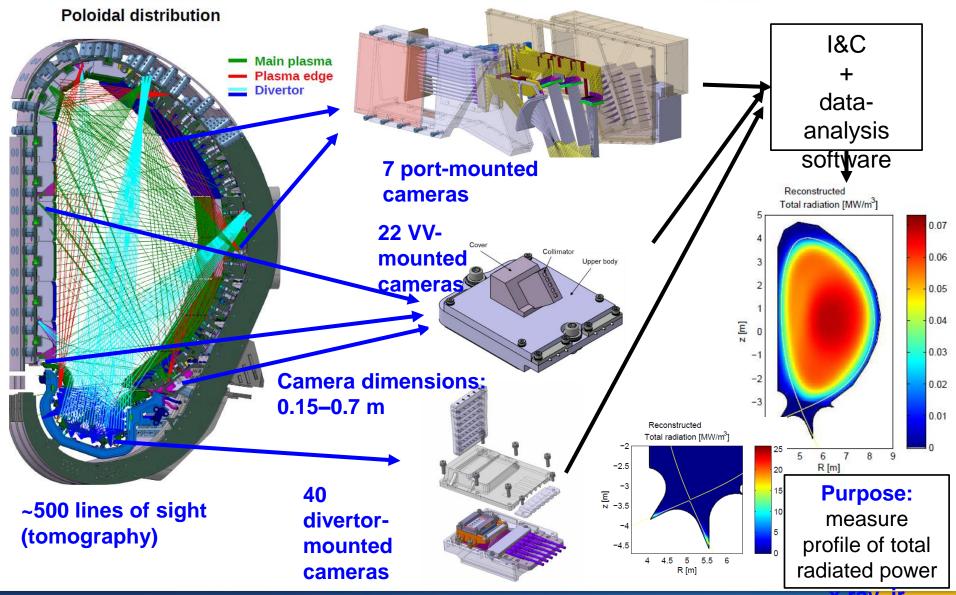



Fig. 13: Short, long and total gates for a typical neutron pulse (left) and gamma pulse (right). 1 sample = 2.5 ns.


Courtesy of ENEA & PTB

AIDA

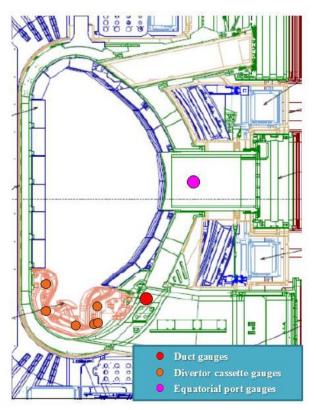
Academia meets industry – Overview of EU diagnostics for fusion experiments - 27th April 2023

Bolometer diagnostic (1/2)

Academia meets industry – Overview of EU diagnostics for fusion experiments - 27th April 2023

Bolometer diagnostic (2/2)

- **Principle:** temperature-sensitive resistors measuring the temperature change resulting from incident radiation (IR / X-rays).
- Challenges for design of all components:
 - High electro-magnetic and heating loads (<400°C). Nuclear radiation.
 - Precision-machined components in vacuum and with space constraints
- **Specialized bolometer sensors** (IR/X-rays) have been prototyped that are suitable for these conditions.
 - $\circ~$ Blackened 20-µm thick gold absorber on a thin substrate
 - Developed from typical bolometer sensors used on present-day fusion experiments.
- Pictures show two unblackened prototypes (size 5 × 23 mm²).
- **Testing** for thermal cycling, accidental steam exposure, periodic pressure transients, light bursts and accelerations is in progress.
- Nuclear irradiation testing in a research fission reactor is planned.



Diagnostic pressure gauges (DPGs)

DPG is a diagnostic sensor that **measures the pressure** inside the plasma

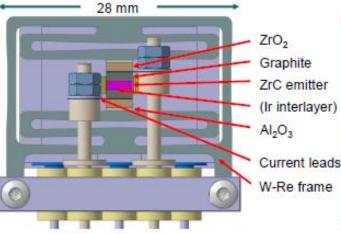
DPGs location in the tokamak

Indirect measurement of the ionization current produced by electrons emitted from a ZrC electrode

The EU scope: 52 Pressure sensors Electronics and Power Supplies Data acquisition and I&C

Objectives and requirements

- Measurement of neutral gas pressures at walls
- Basic machine control
- Pressure range during pulse
 - 10⁻⁴ to 1 Pa in equatorial port (EP)
 - 10⁻² to 20 Pa in divertor (DC) and lower port (LP)
- Accuracy of 20 % over the pressure range
- Time resolution of 50 ms
- System availability of 99.8 % over ITER lifetime
- No foreseen maintenance
- Lifetime expected to be at least 1000 hours



Diagnostic pressure gauges (DPGs)

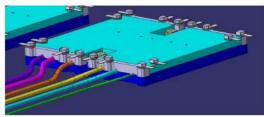
Indirectly heated zirconium carbide plate is used as an electron emitter

Prototypes were successfully manufactured by two independent suppliers

⊃)

CAD drawing of gauge head

Photo of assembled prototype


Long pulse **tests** in high magnetic fields **up to 6T** completed **successfully**

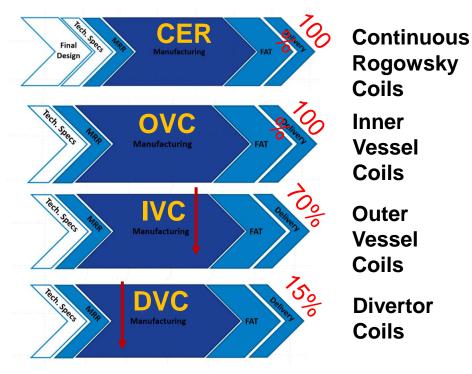
Endurance at high pressures of hydrogen critical: **Graphite erodes** at emitter junction Ir interlayer slows down the carbon loss rate

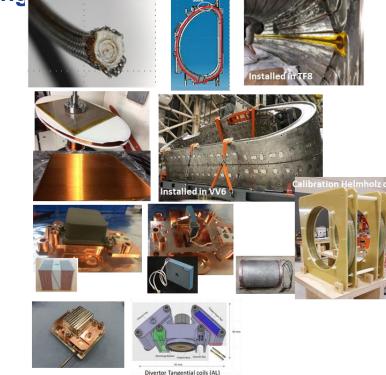
Further tests are forecast to double confirm that the design is valid even if with some erosion

Gauge head with support structure (lid faded out) and attached MI-cable tail

Junction box for connection of mineral insulated (MI) cables in equatorial port

Courtesy of IPP

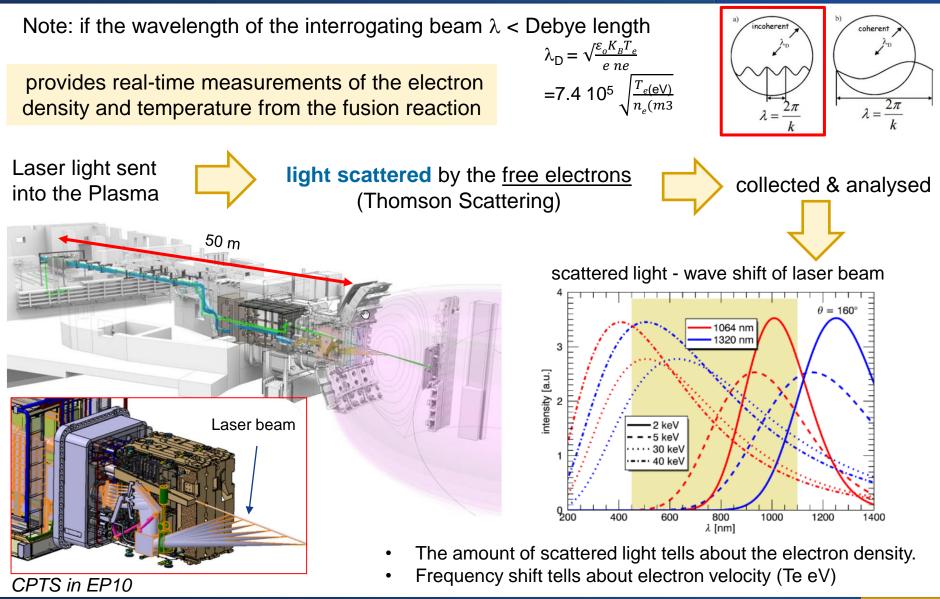



Magnetic Sensors

The Magnetic Sensors are essential for ITER plasma operation. Their functioning is based on the principle of electromagnetic inductance

STATUS: Delivered/ Manufacturing on-going

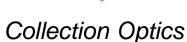
Production challenges: High precision machining and assembly of ceramics, manipulation of delicate insulation protections, development of reliable wires weldings, high thickness coating processes.


'Optical' Diagnostics

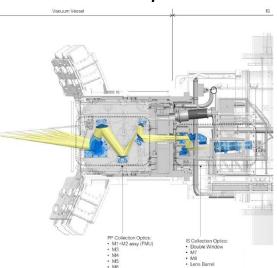
Academia meets industry – Overview of EU diagnostics for fusion experiments - 27th April 2023

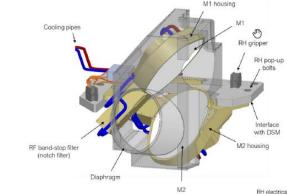
Core Plasma Thomson Scattering (CPTS)

Academia meets industry – Overview of EU diagnostics for fusion experiments - 27th April 2023

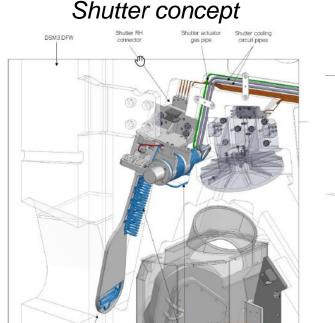

Core Plasma Thomson Scattering (CPTS): key components

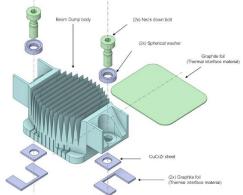
Status: Preliminary design on-going


- Beam dump
- High-power laser (Nd-YAG 1064 nm: 5J 100 Hz 4 ns)
- First Mirror Unit with Shutter & RF Cleaning
- Collection optics & fibre bundles

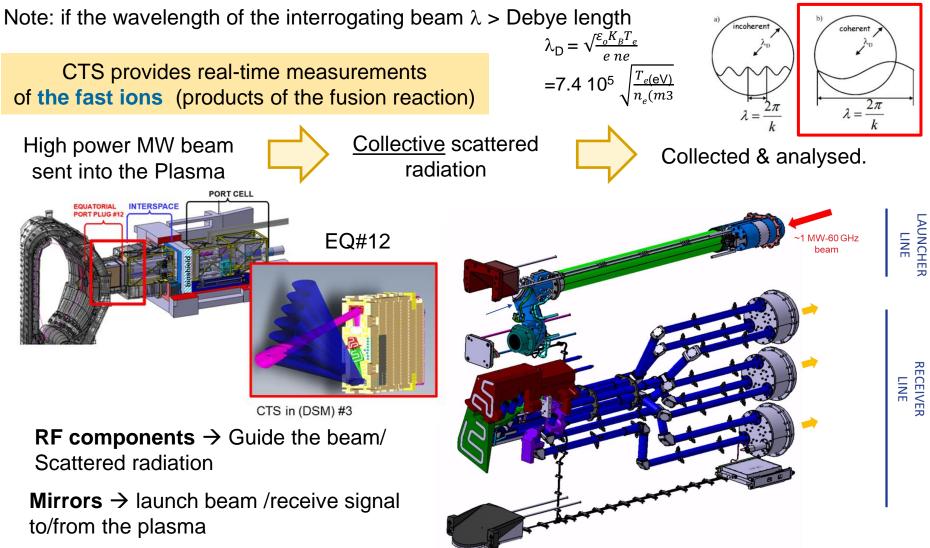

FMU

- Spectrometers
- Protection Important Components (Confinement barriers)


Beam Dump –



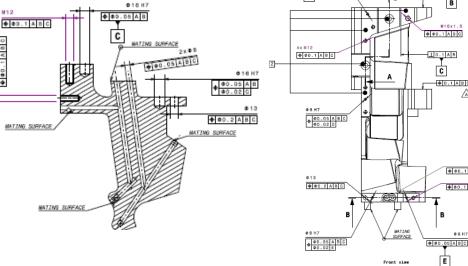
Integrate cooling & RF cleaning

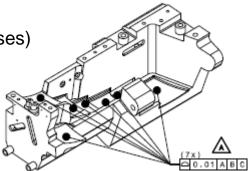


Tantalum Zirconium Molybdenum

Collective Thomson Scattering (CTS)

Supporting structures


Collective Thomson Scattering (CTS)


Status: Final design closed

Main manufacturing/testing challenges

- RF components based on Circular Corrugated Waveguides (very low losses)
- **RF Testing** of Full transmission lines
- Joining Techniques (Welding, hipping, brazing) - Next slide
 - Mirrors joint by Hot Isostatic Pressure
- Precision machining with tight tolerances
 - **Complex shapes** (for machining and bending of cooling pipes)
 - **Gun-drilling** (cooling channels)
 - Mirrors shapes tolerances

AIDA 📉

4 ¢0.05 A B

D

@ 8 H7

E

0.1 A B

C 0.1 A B C A

Thank you for your attention

Follow us on:

www.f4e.europa.eu

www.twitter.com/fusionforenergy

www.youtube.com/fusionforenergy

