

Advancement and Innovation for Detectors at Accelerators

2nd AIDAinnova Annual meeting Valencia

WP7 report: Gaseous Detectors

Silvia Dalla Tore (INFN-Trieste), Burkhard Schmidt (CERN)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004761.

Task Overview

- Task 7.1: Coordination and Communication
- Task 7.2: RPC sector
 - 7.2.1: Multi-gap RPCs (MRPCs) for fast timing
 - 7.2.2: Shower development in SDHCAL
 - 7.2.3: Eco-friendly gas mixtures for RPCs

(S. Dalla Torre, BS) **3 tasks** (C. Williams) (Mary-Cruz Fouz) (B. Mandelli, D. Piccolo)

Task 7.3: MPGD sector, Technology and engineering

- 7.3.1: Development of resistive electrodes for MPGDs
- 7.3.2: Industrial engineering of high-rate μ -RWELLs
- Task 7.4: Large volume gaseous detectors
 - 7.4.1: A 4-channel electronic board for cluster counting
 - 7.4.2: High pressure gas TPC for neutrino physics
- Task 7.5: PID sector

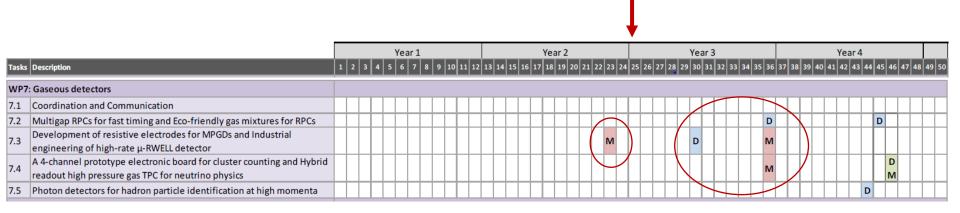
- Photon detectors for hadron Particle ID at high momenta

2 tasks

- (P. Verwilligen)
- (G. Bencivenni)

2 tasks

- (F. Grancagnolo) (A. Deisting)
- **1 task** (S. Dalla Torre)



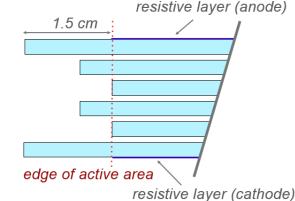
		Beneficiaries							Associated Partners					
	7.1	CERN	INFN- Trieste											
	7.2.1	INFN- Bologna	LIP- Coimbra	Univerity of Clermont- Ferrand	PICOTECH SAS				Tsinghua University	Institute of	Bundang	IRIS Co.	Benemérita Universidad Autónoma de Puebla	
	7.2.2	CNRS - IP2I	CNRS - LPC	CNRS - OMEGA	CIEMAT									
Tasks	7.2.3	CERN- EPDT	INFN- Frascati	INFN- Roma2	INFN- Bologna	INFN-Bari	INFN- Torino	Ghent University						
	7.3.1	INFN- Pavia	INFN-Bari	INFN- Lecce										
	7.3.2	INFN- Frascati	INFN- Bologna	INFN- Ferrara	CERN	ELTOS								
	7.4.1	INFN- Lecce	CAEN											
	7.4.2	RHUL	UOXF	INFN-Bari	USC	CERN	CSIC-IFIC							
	7.5.1	INFN- Trieste	INFN-Bari	INFN- Bologna	Charles University				USTC	INCOM				

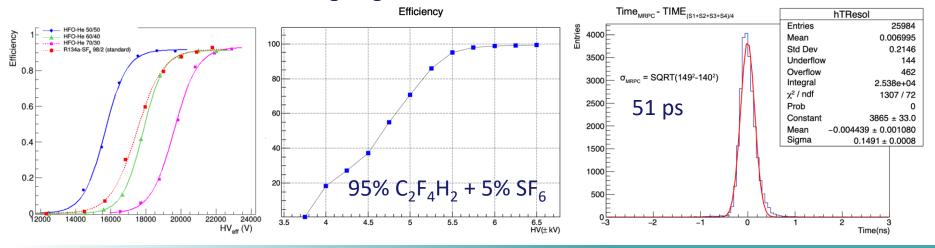
- Strong collaboration with <u>industry</u> (yellow boxes)
- Wide and solid links also <u>outside Europe</u>
- > Bi-lateral agreements with non-European partners have been signed last year

Milestones & Deliverables

> The first milestone of WP7 has been successfully achieved!

> We have a couple of Deliverables and Milestones coming up.


I will address the plans and progress towards the achievement of these milestones and deliverables.


Task 7.2.1: MRPCs for fast timing

MRPC developments for fast timing:

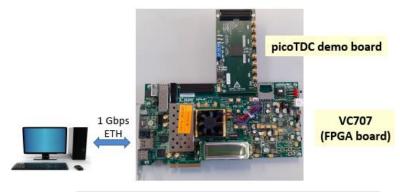
- Construction of gas-tight boxes and readout boards in Bologna to produce series of MRPCs.
- Glass sheets include new low-resistivity glass ($10^9 \Omega cm$), 10 layers with 230µm gaps, made with coated nylon lines.
- High dark current issues in the edge area have been solved.

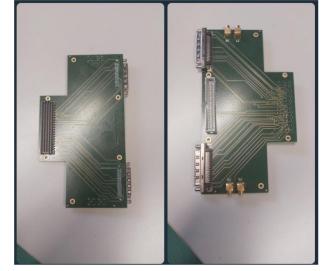
Beam-tests at T10 at CERN ongoing:

Task 7.2.1: MRPCs for fast timing

picoTDC cards for MRPC

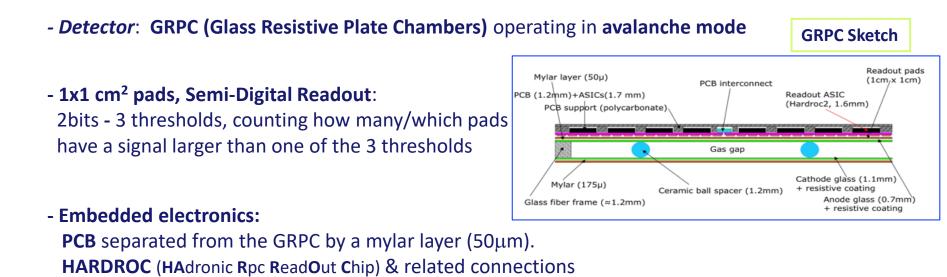
- time resolution of picoTDC better than 5 ps, readout with NINO ASIC.


Status:


- Test setup needed to evaluate picoTDC coupled with the VC707 Xilinx FPGA board completed
- Designed and produced FMC adapter card to connect MRPC NINO FEA to picoTDC
- Use on test beams in spring 2023 at CERN

Outlook:

 As a second step, we are designing a custom board with 2 picoTDCs and 1 FPGA for higher channel count and higher data rates with USB-C interface.


 \rightarrow A general purpose card for beam- and lab-test

Task 7.2.2: Shower development in SDHCAL

- General goal: Extend SDHCAL to include timing information (100 200ps resolution) for 5D-calorimetry (space, amplitude & timing)
- Implementation: Build small multi-gap RPC (MRPC) equipped with a new version of electronics with timing capabilities to prove the final performance

Task 7.2.2: Electronics for SDHCAL

Petiroc2A/B

Baseline ASIC

Has some limitations:

- difficult to chain, limited digital logic, dead-time
- Only for exploring the capabilities.

Developed at CNRS-OMEGA partially thanks to AIDA2020 for CMS-muon upgrade

NINO Other ASICS being or to be used

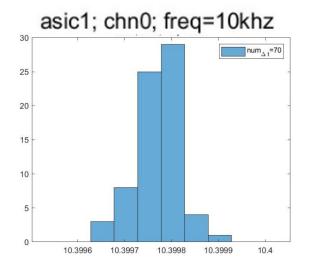
- ASIC designed for the ALICE MRPC (TOF array)
- 8 channels, Time resoltion ~50 ps

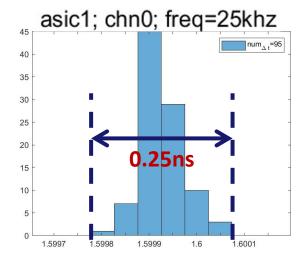
LiROC+picoTDC

Board is under development by the WEEROC company Based on LiROC + picoTDC

64-channel ASIC

64 channel TDC ASIC Time resolution <12 ps

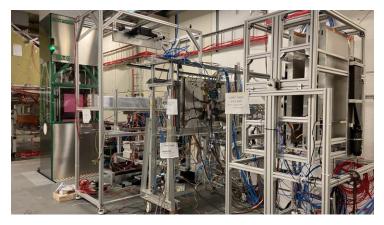



Task 7.2.2: Tests with Petiroc2B ASIC

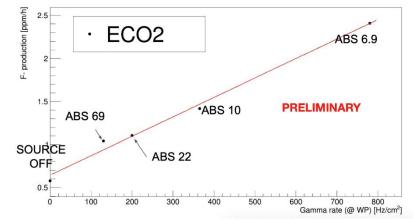
Same signal injected into two chips (with a double-pass).

 Δt_{12} : Δt between two Petiroc2B chips of each hit.

$\overline{\Delta t_{12}}(\mu s)$	$std(\Delta t_1)(ps)$	$std(\Delta t_2)(ps)$	$std(\Delta t_{12})(ps)$	$f_{sig}(kHz)$
5.8000	41.0912	49.5356	73.5276	25
5.7999	48.6895	51.9453	78.4336	10

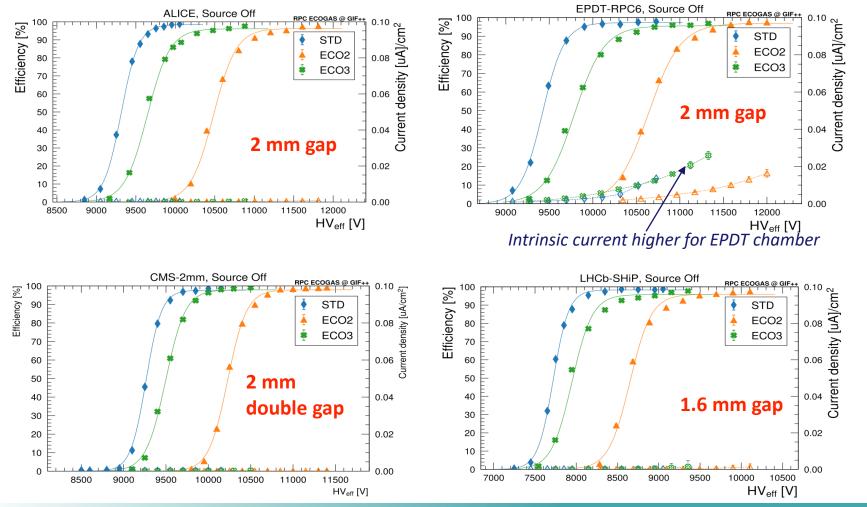

Task 7.2.3: Eco-friendly gas mixtures for RPCs

Set-up installed at GIF++ facility

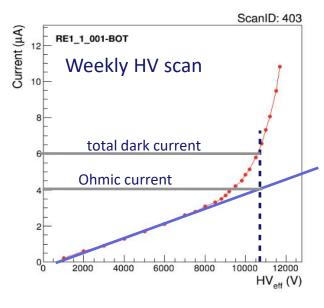

- 12 TBq ¹³⁷Cs source → Long-term aging test
- H4 Muon beam in some periods of the year
 → Test-beam to study detector performance
- PRPCs from ALICE, ATLAS, CMS, EP-DT and LHCb/SHiP tested

Two eco-friendly gas mixtures tested:

- STD: 95.2% R134A, 4.5% iC₄H₁₀, 0.3% SF₆
- ECO2: 60% CO₂, 35% HFO, 4% iC₄H₁₀, 1% SF₆
- ECO3: 69% CO₂, 25% HFO, 5% iC₄H₁₀, 1% SF₆
- Since July 2022: long-term aging test started with ECO2 gas mixture, monitoring the currents
 - Goal is to collect about 1 C/cm²
 - Dedicated F⁻ measurements performed before starting irradiation campaign

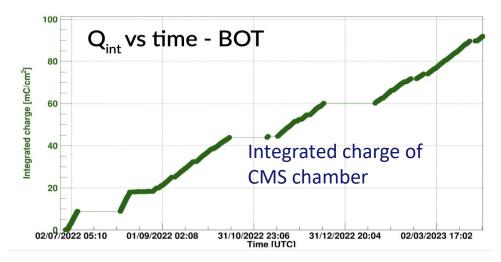


F-production vs gamma rate


Task 7.2.3: Eco-friendly gas mixtures for RPCs, Test-beam results

Task 7.2.3: Eco-friendly gas mixtures for RPCs, long term ageing test

HV scan with source OFF



Every week:

- HV scan with source off
- Extract the dark and ohmic current
- Chamber operated @ low efficiency under irradiation

Aging started August 2022

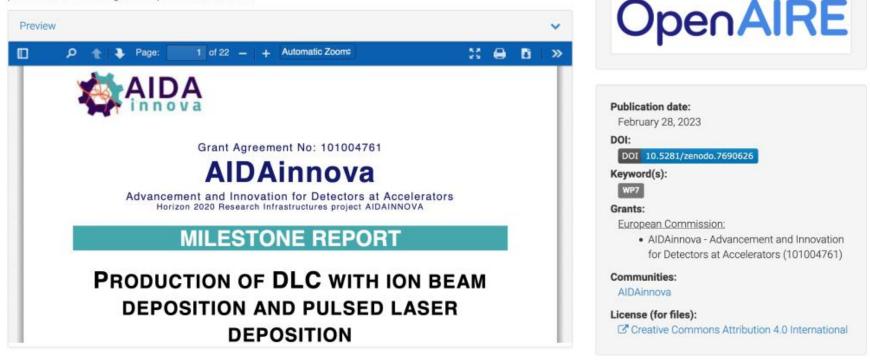
50 - 250 mC/cm² depending on the chamber



Task 7:3.1: Development of resistive electrodes for MPGDs

High-Resistive GEM with DLC (Diamond-Like-Carbon) electrodes

- Pulsed-Laser-Deposition (PLD) foils of up to 5x5 cm² produced
- Ion-Beam-Deposition (IBD) mask for 10x10 cm² are waiting for etching result on 7x7 cm² foil
- Latest foils kept under vacuum and put in vacuum sealed bag for transport to CERN.
- Etching tests at CERN were done recently
- > This activity is related to Milestone M23

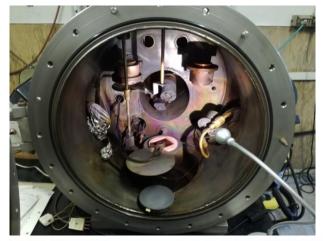

Milestone Report Task 7.3.1

Indexed in

Production of DLC with ion beam deposition and pulsed laser deposition

A.P. Caricato; A. Valentini; P.Verwilligen

Diamond-Like Carbon (DLC) resistive layers are a key ingredient for increasing the rate capabilities of Micro-Pattern Gaseous Detectors (MPGDs). Their production method and related quality is studied by ion beam deposition and pulsed laser deposition. The current DLC sample size will be scaled up gradually to 10×10 cm², their quality is assessed for the production of detector-grade amplification structures.

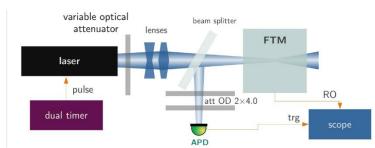


- Report delivered on time in month 23 (February 2023)
- 22 pages 15 figures Introduction to various PVD techniques for DLC

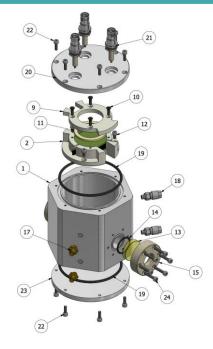
Ion Beam Sputter Deposition

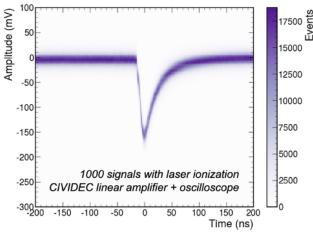
- Obtained correct recipe for 100MOhm/sq DLC covered by 500nm Cu layer
- Scaled up production to 10x10 cm²

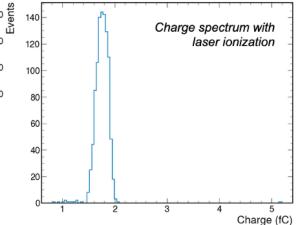
4	Tab.	2 Parameters fo	s for main and assistance ion beam sources for the deposition of a multi-layer DLC- <u>Tj-</u> Cu film									
			Ma	in ion so	urce		Assistan	ice ion sou	rce	Ν	Notes	
		step	<u>V</u> beam	<u>Ibeam</u>	Ar	<u>V</u> keam	Ibeam	Ar	H_2	time	thickness	
	1	PI cleaning	-	-	-	150V	1A	5.1 sccm	4.0 sccm	300s	-	
	2	DLC layer	800V	50mA	2.5sccm	80V	50mA	7.3 sccm	2.0 sccm	7200s	50 nm	
	3	DLC cleaning	-	-	-	150V	1A	5.1 sccm	-	300s	-	
	4	Ti interlayer	1300V	35mA	2.5sccm	-	-	-	-	1260s	10 nm	
	5	Cu layer I	1000V	50mA	2.5sccm	-	-	-	-	720s	30 nm	
	6	Cu cleaning	-	-	-	150V	1A	5.1 sccm	-	300s	-	
	7	Cu layer II	1200V	60mA	2.5sccm	-	-	-	-	8520s	470nm	

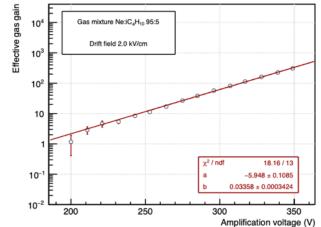


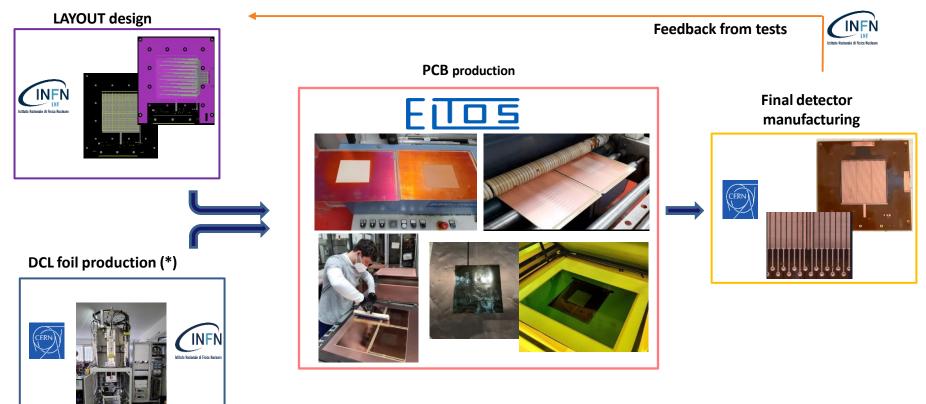
Test of the DLC foil


Test of the DLC foil inside the small-size detector


Setup has both quartz (UV-laser) as mylar (55Fe) window


- Stable operation under 450V in $Ar:CO_2:iC_4H_{10}$ 93:5:2
- Signals clearly visible (150mV) and 1.75fC
- Gain up to 500 measured not bad for a first production foil

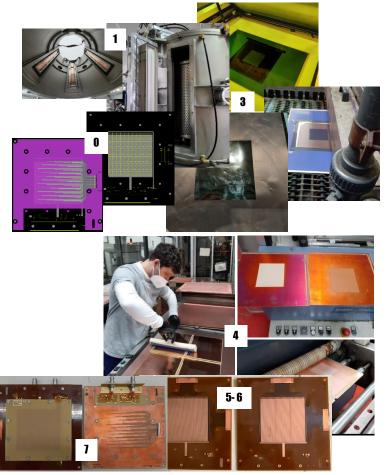




Task 7:3.2: Industrial engineering of high-rate μ-RWELL detectors

μ-RWELL technology transfer loop (LNF – CERN – ELTOS)

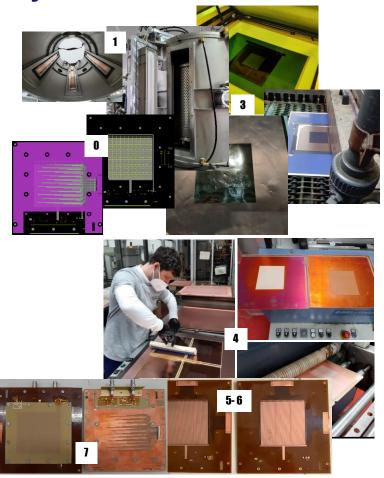
*DLC Magnetron Sputtering machine cofunded by CERN and INFN


Task 7:3.2: Knowledge Transfer, achievements in 2022

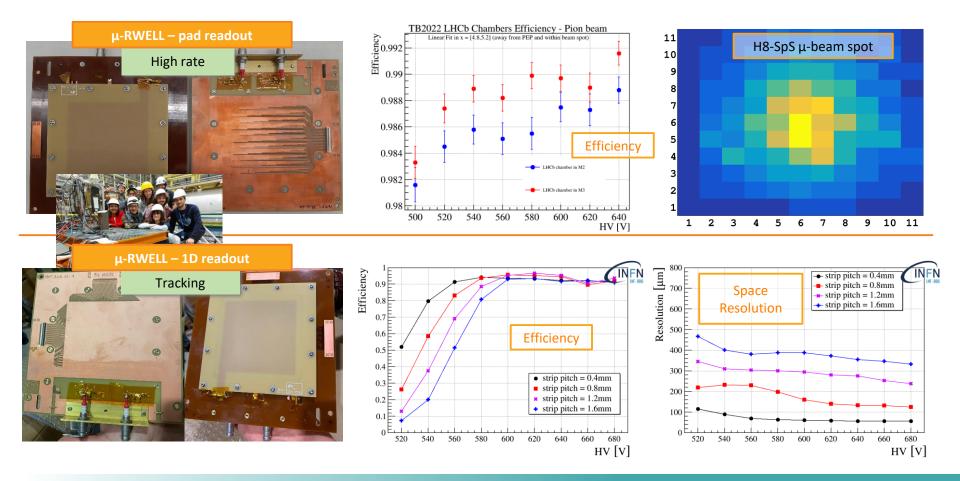
- Step 0 Detector PCB design @ LNF
- Step 1 CERN INFN DLC sputtering machine @ CERN (+INFN)
 - delivery foreseen by the end of Oct. 2022
 - INFN crew tbd & trained
- -1105
- Step 2- Producing readout PCB by ELTOS pad/strip readout
- Step 3 DLC patterning by CERN
 - photo-resist \rightarrow patterning with BRUSHING-machine
- Step 4 DLC foil gluing on PCB by CERN
 - double 106-prepreg \rightarrow 2x50µm thick
 - PCB planarizing w/ screen printed epoxy \rightarrow single 106-prepreg

- Step 5 Top copper patterning by **CERN** (in future by **ELTOS**)
 - Holes image and HV connections by Cu etching
- Step 6 Amplification stage patterning by CERN
 - PI etching \rightarrow plating \rightarrow ampl-holes
- Step 7 Electrical cleaning and detector closing @ CERN

Task 7:3.2: Knowledge Transfer, objectives for 2023


- Step 0 Detector PCB design @ LNF
- Step 1 CERN_INFN DLC sputtering machine @ CERN (+INFN)
 - <u>delivered</u> at the end of Oct. 2022
 - INFN crew tbd & trained
- Step 2- Producing readout PCB by ELTOS
 - pad/strip readout

- Step 3 DLC patterning by ELTOS
 - photo-resist \rightarrow patterning with BRUSHING-machine
- Step 4 DLC foil gluing on PCB by ELTOS
 - double 106-prepreg \rightarrow 2x50µm thick
 - PCB planarizing w/ screen printed epoxy \rightarrow single 106-prepreg
- Step 5 Top copper patterning by CERN (in future by ELTOS)
 - Holes image and HV connections by Cu etching



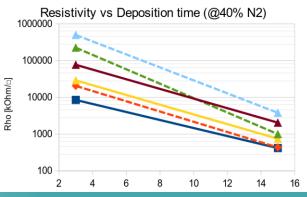
- Step 6 Amplification stage patterning by CERN
 - PI etching \rightarrow plating \rightarrow ampl-holes
- Step 7 Electrical cleaning and detector closing @ CERN

Task 7:3.2: μ-RWELL layouts co-built by ELTOS & CERN (Oct.'22)

Task 7:3.2: Update on the CERN-INFN DLC machine

31st Oct. 2022 – Delivered
31st Oct. - 4th Nov. 2022 – Commissioning & test training
21st - 23rd Nov. 2022 – First DLC sputtering test, N₂ doping
5th - 9th Jun. 2023 – Second DLC sputtering test

• Ar + C₂H₂ doping

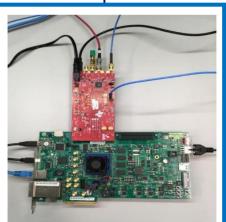

Some technical features:

- Flexible substrates up to 1.7m×0.6m
- Rigid substrates up to 0.2m×0.6m

Five cooled target holders, arranged as two pairs face to face and one on the front, equipped with five shutters.

The machine shall be able to **sputter or co-sputter different materials,** in order to create a coating layer by layer or an adjustable gradient in the coating.

Task 7.4.1: A 4-channel prototype electronic board for cluster counting

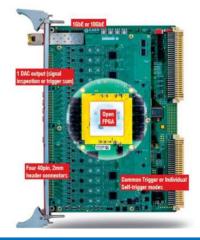

- Cluster counting in gaseous detectors is mainly a matter of the read-out electronic chain
- 3 hardware and 3 software approaches are pursued

TEXAS INSTRUMENT ADC32RF45

purchased

Tests will soon start

 ADC32RF45 directly compatible (no need of JESD204B software license) with Xilinx Kintex UltraScale KCU105 and high performance in terms of: noise, ENOB, isolation between channels.



Connection with CAEN

We'll continue our tests until CAEN produces the new high-performance digitizer (**VX2751**).

In the meantime, we will

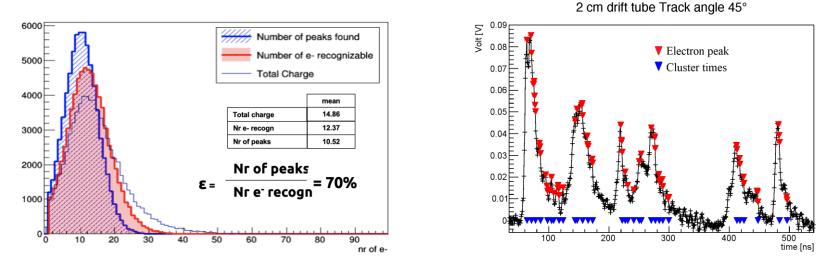
- start testing their lower performance digitizer VX2740, received recently
- begin to get familiar with their "OPEN FPGA" svstem

Association of the second second

IEEE NSS 2021

NALU Scientific

The 4 channel evaluation board has arrived in Lecce 950 MHz, 2.5-3.6 Gsa/s 12bit

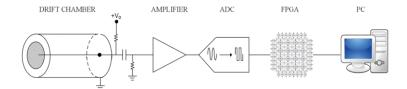


Task 7.4.1: Software development, Derivative algorithm

 A first simple tested algorithm of peak finder is based on the first and second derivative of the digitized signal function *f*, is defined for each time bin i, Δb being the number of bins over which the average value of f is calculated:

$$f'(i) = \frac{f(i) - \bar{f}(i - \Delta b)}{\Delta b} \quad f''(i) = f'(i) - f'(i - 1)$$

• A peak is found when $\Delta f, f'$ and f'' are above pre-defined threshold levels.



2nd AIDAinnova Annual Meeting

Task 7.4.1: Algorithm implementation

The verified solution for a single channel

- Implement on a board with multiple channels,
- Three different approaches are currently being pursued:
 - TEXAS INSTRUMENT ADC32RF45
 - NALU SCIENTIFIC ASoCv3 and HDSoC
 - CAEN digitizer VX2751
- First task (in particular, for the first and second case) is implementing the data transfer to the DAQ system to take advantage of the 10Gbit/s standard:
 - optical fiber with SFP + connectors
 - SFP + to RJ45 adapters
- Second task is finding the most efficient way to store the elaborated information before the data transfer.

On track for 4-ch system board (ADC + FPGA) engineered (support from CAEN) (M36)

Task 7.4.2: Hybrid readout for high-pressure gas TPC for v - physics

Fwo main goals:

- optical read-out of photoluminescence, combined with charge read-out: 3-D images
- innovative gas mixtures with scattering off different nuclei

ALICE MWPC testing at RHUL

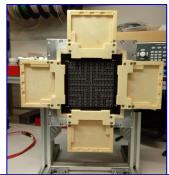
- Equipped with CCD camera and charge readout, using α particles and Fe^{55} source

Explore feasibility to use MWPCs in a HPgTPC for v - physics

Warwick TPC platform

- Identification of novel gas mixtures
- Develop high-granular optical RO- system for HPgTPC to enhance resolution.

Measure low-momentum hadrons from
 v-N interactions to image *v*-events.

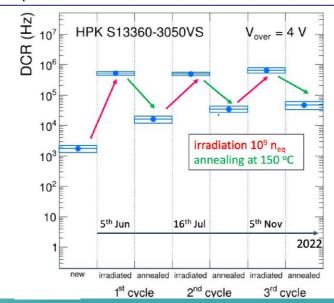

Task 7.5. Photon detectors for hadron particle identification at high momenta

>A bridge between gaseous detectors and PID, with focus of the detection of single photoelectrons

> 3 R&D lines are pursued:

1. MPGD-based PDs

Design, construction and characterization of a small pad-size **prototype**

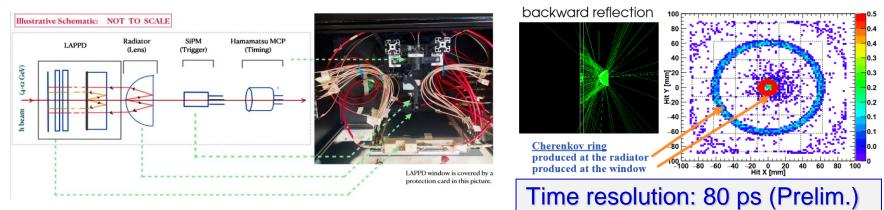


2. Visible light PDs insensitive to B-fields

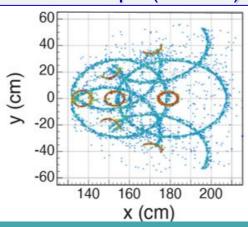
A. SiPMs: 7 different SiPMs from 3 producers under systematic studies

board	sensor	uCell (µm)	V _{bd} (V)	PDE (%)	DCR (kHz/mm²)	window	notes
HAMA1	S13360 3050VS	50	53	40	55	silicone	legacy model Calvi et. al
	S13360 3025VS	25	53	25	44	silicone	legacy model smaller SPAD
HAMA2	S14160 3050HS	50	38	50		silicone	newer model lower V _{tel}
	S14160 3015PS	15	38	32	78	silicone	smaller SPADs radiation hardness
SENSL	MICROFJ 30035	35	24.5	38	50	glass	different producer and lower V _{tel}
	MICROFJ 30020	20	24.5	30	50	glass	the smaller SPAD version
BCOM	AFBR S4N33C013	30	27	43	111	glass	commercially available FBK-NUVHD

Systematic characterization at different temperatures before and after irradiation

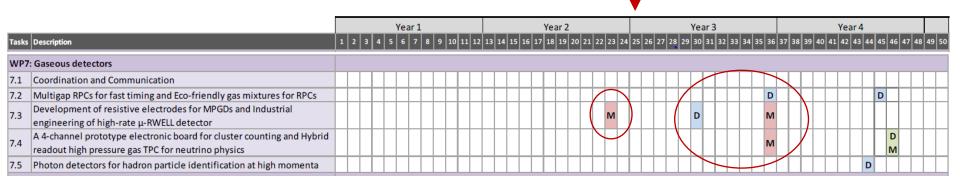

DCOM

Task 7.5. Photon detectors for hadron particle identification at high momenta


- 2. Visible light PDs insensitive to B-fields
 - **>** B. LAPPDs: time resolution measured in test-beam at CERN PS in October 2022

Cherenkov photons were generated in a quartz radiator

3. Comparative assessment by simulations using as input the photo-sensor performance from R&D lines 1. and 2.


Initial simulation studies:

Overview of Deliverables and Milestones

- 1st WP7 milestone successfully fulfilled in February 2023
- We are on track with the milestones for the 3rd year
- However, for one deliverable (scheduled for Month 30) we are late by a few month, probably 6.

The schedule will be finalized in the next month

Planned activities for this year are progressing well !