

Advancement and Innovation for Detectors at Accelerators

Report from WP13 Prospective and Technology-driven Detector R&D

AIDAinnova Annual Meeting, April 25, 2023 ADEIT and CSIC, Valencia (Spain)

> Valentina Sola Torino University and INFN

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004761.

Projects

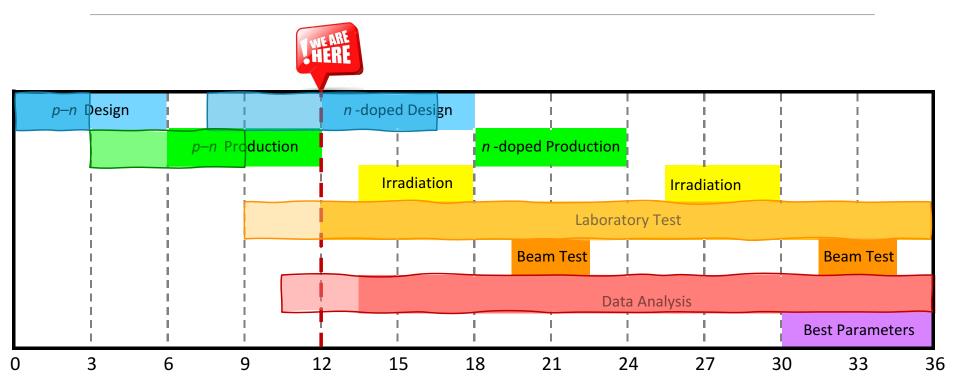
Thin Silicon Sensors for Extreme Fluences

Make Si sensors radiation tolerant by using a thin bulk, internal amplification and using a gain implant that would withstand a factor of 50 higher fluences than what is presently available

The Silicon Electron Multiplier, a new approach to charge multiplication in solid state detectors

Make Si sensors radiation tolerant by a novel biasing method – electrodes embedded in silicon

Development of fine-sampling calorimeters with nanocomposite scintillating materials


Develop a new generation of fine-sampling calorimeters that use innovative scintillating materials based on perovskite nanocrystals dispersed in a plastic matrix to form fast (~100ps) and radiation resistant (~1 MGy) scintillators

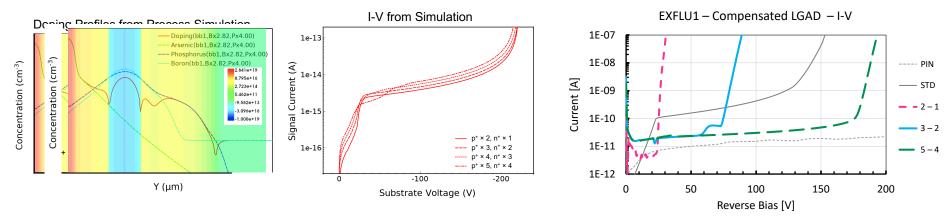
Wireless Data Transfer for High-Energy Physics Applications

Develop mm-wave-based wireless communication as an alternative to optical and wired links in a HEP-like environment to reduce the material and optimize the read-out

eXFlu-innova – Project Plan

Deliverables:

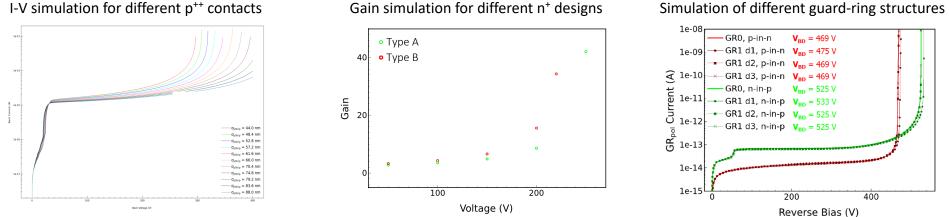
- 1. simulation and design of the *p*-*n* compensated gain implant (M6) DONE
- 2. production of *p*–*n* compensated sensors (M12) DONE and *n*-doped sensors (M24) –



3. identifications of the best parameters to manufacture compensated LGADs (M36) – pending

The first *p*–*n* compensated LGAD

The first *p–n* compensated LGAD production batch released in November 2022


Ongoing testing on the p-n compensated LGAD batch:

- \rightarrow I-V, C-V & test structure characterisation
- \rightarrow TCT scan as a function of bias voltage using different laser wavelengths
- \rightarrow TCT scan over the sensor surface to investigate the peripheral region of the gain implant
- \rightarrow SIMS on the gain implants to investigate the boron and phosphorus profiles
- \rightarrow preparation of the irradiation campaign

Outside eXFlu-innova: HPK presented a *p*–*n* compensated LGAD batch @ TREDI2023 [link]

The p-in-n LGAD production batch is necessary to study the donor removal coefficient

Ongoing simulation of the p-in-n LGAD batch:

p-in-n LGAD

- \rightarrow simulation of the electrostatic behaviour for different designs of the p^{++} contact
- \rightarrow simulation of the transient behaviour for different designs of the n^+ gain implant
- → simulation of the electrostatic behaviour for different guard-ring designs optimised for thin substrates
- \rightarrow short-loop run to define the p^++ contact process parameters

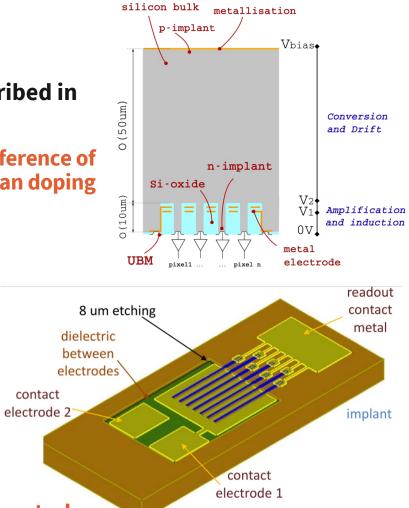
Outside eXFlu-innova: CNM presented a p-in-n NLGAD batch @ 41st RD50 [link]

Silicon Electron Multiplier demonstrator

- Project lead by CERN and CNM
- Aim at demonstrating the concept of SiEM described in <u>NIM A 1041 [2022] 167325</u>

 \Rightarrow try to achieve gain in Si sensor with difference of potential applied to embedded electrodes rather than doping

• Project organised in several phases


- [1] Definition of the process (technics, marterial, etc...)
- [2] TCAD simulation and design of the chosen process
- [3] Production
- [4] Characterisation
- [5] Investigation of alternative approach (different available tech., materials)

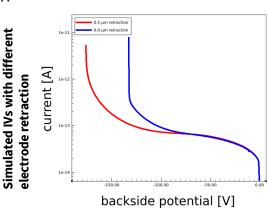
Proposed process based on DRIE

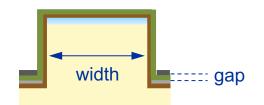
- Process defined in second half of 2022
- Photolithography for etching pattern
- Deep reactive ion etching
- Metallisation and oxide deposition

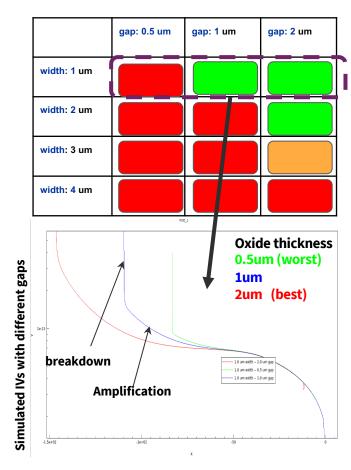
\Rightarrow Limits and constraints of the process under study

Process proposal

Geometry study


- Generic interplay between geometrical parameters studied in <u>NIM A 1041 [2022] 167325</u>
- Geometry adapted to the real production process


• Specific geometrical constraints

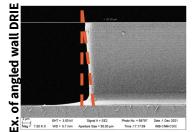

- width of the amplification pillar
- gap between amplification electrodes
- distance between pillar and electrodes

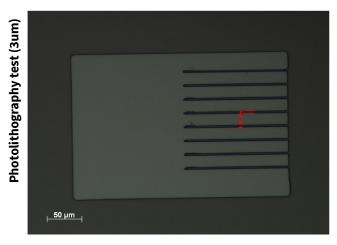
Study with TCAD simulation of geometry compatible with process

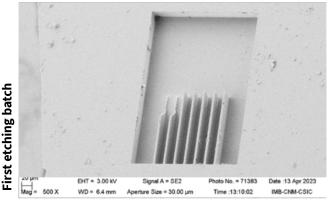
- IV used to check if amplification happens before breakdown (checked with transient sim.)
- best for low width and high gap
- width limited by lithography and gap limited by oxide deposition
- retraction of the electrode from the pillar still allow amplification (see next slide)

Process definition and test

- Test of photolithography procedure for etching
 2,3,4µm achieved
- 1µm at the limit of what can be done with photolithography
 - use e-beam lithography (prefer to avoid for demonstrator)
 - inverted pyramid geometry (ie. 1µm at the bottom with slanted walls)

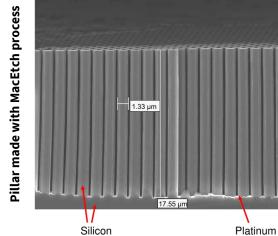

⇒ impact is that electrodes are retracted from the pillar wall by the pyramid shadow (OK in simulation)

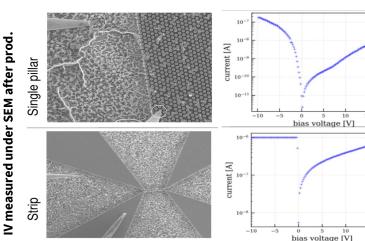

• First test of the DRIE step


- $\circ~$ over-etching to be corrected in the next batch (25 μm instead of 8 $\mu m)$
- measurement to qualify the angle of the inverted pyramid wall on-going

Preparing next step

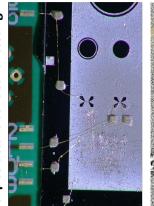
metallisation and oxide deposition

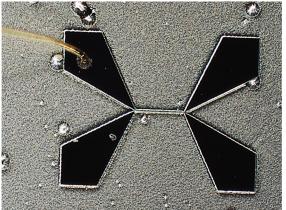

Alternative approach to SiEM


• Study possible use of Metal assisted etching [5]

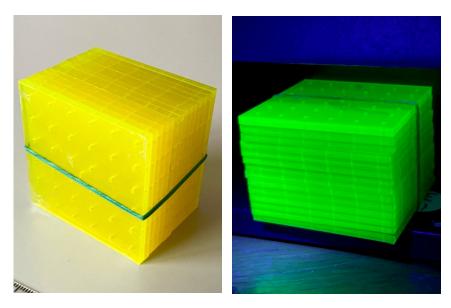
- parallel project between CERN and PSI, based on AdEM 22 (2020) 2000258
- very different process constraints (cheap, high aspect ratio, first electrode deposited while etching), but never used in active device

• Testing the structures


- $\circ~$ IV just after production with probe-station \Rightarrow pn junction conserved
- $\circ~$ bonding of test structures for IV in the lab
- preparing setup for laser/ source test.

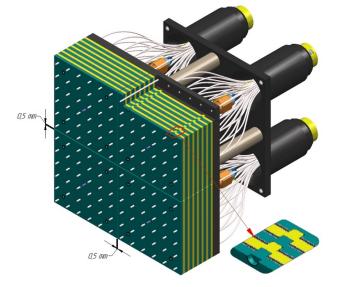


see M. Halvorsen @ RD50 41st workshop


Strip structure bonded for testing

Nanomaterial composites (NCs)

Semiconductor nanostructures can be used as sensitizers/emitters for ultrafast, robust scintillators:


- Perovskite (ABX₃) or chalcogenide (oxide, sulfide) nanocrystals
- Cast with polymer or glass matrix
- Decay times down to O(100 ps)
- Radiation hard to O(1 MGy)

Despite promise, applications in HEP have received little attention to date

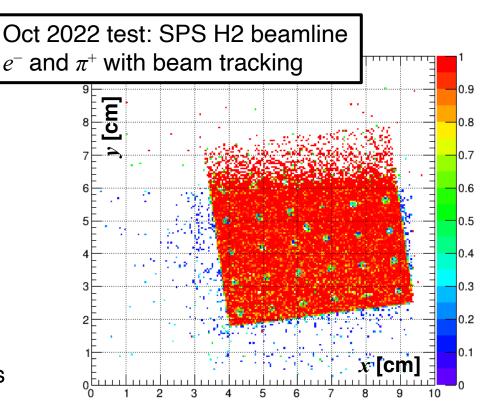
No attempt yet to build a **real calorimeter with NC** scintillator and test it with high-energy beams

Shashlyk design naturally ideal as a test platform:

- Easy to construct a shashlyk calorimeter with very fine sampling
- Primary scintillator and WLS materials required: both can be optimized using NC technology

KOPIO/PANDA design Fine-sampling shashlyk

NanoCal project status


Schedule:

- Oct 2022: First shashlyk component test at CERN: fibers/tiles/SiPMs
- 2023: Further iterations to improve performance of NC scintillator prototype
- 2024: Construction of full-scale shashlyk modules; performance comparison

2 prototypes with 12 fine sampling layers $1.3X_0$ in depth: MIP deposit = 10 MeV Known formulation for NC scintillator:

- 0.2% CsPbBr $_3$ in UV-cured PMMA
- 50% of light emitted with τ < 0.5 ns

Conclusion of 2022 test:

NC prototype seems to work but with low light yield and many open questions

NanoCal goals for 2023

Big effort in 2022 to test first prototype only 5 months after project start! Beam test results ambiguous due to construction errors for NC prototype

2023 NanoCal beam test 14-21 July, T9 at CERN PS *e*⁻ and MIPs, 1-10 GeV

Comprehensive test program for 2023, prototypes under construction:

Conventional scintillator

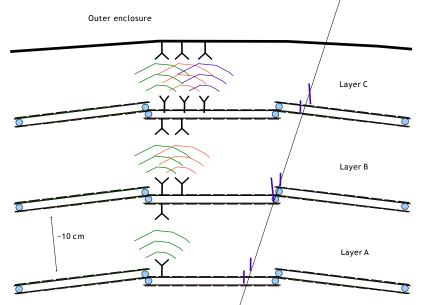
Nanocal scintillator, 0.2% (rebuilt)

Re-establish quantitative baseline with errors corrected

Nanocal scintillator, 0.2% + custom fibers

High concentration (0.8%?) + custom fibers

New formulation with CsPbCl₃ + intermediate WLS dye


New fiber developed with Kuraray specifically optimized for CsPbBr3 emitter: fast de-excitation, high Stokes shift

Test improvement in light yield with increased concentration

Test improvement in light yield with increased absorption length

- Study of components and antennas integration
- Full link demonstrator(s) from 1 tile to 2 and 3 tiles several mock-ups to be tested
- Use and integrate commercially available components
- Study the performance of the system (data rate, bit error rate, modulation schemes, usage of bandwidth, crosstalk in repeater, etc.)

Debit 1 Gbps per layer and is cumulative, thus it will be reaching 3 Gbps at the outer enclosure.

Courtesy of CEA-Letti and STMicroelectronics

Deliverables

Deliverable 1: First mock-up assembled and tested during the first year, including study of antenna technologies allowing a seamless integration in such a harsh environment (strong irradiation and magnetic fields); specification of the antennas.

Deliverable 2: Second mock-up assembled and tested during the two next years. Three or four layers of silicon detector with their readout, equipped with low power consumption transceiver and antennas.

Deliverable 3: Published study of performance in HEP environment and access to technology for new user communities. Make packages available with user support.

Deliverable 4: (in option depending on the time left) Study of the cumulative noise in multi-hop data transmission and jitter, development of wireless communications strategies for managing crosstalk

Summary and outlook

- The four projects are up and running
- They report at each annual meeting
- MS51: projects selection Dec 2021
 MS52: midterm review Dec 2022
- A final written report is due 2 months before the end of AIDAinnova It is expected to include an evaluation of the potential of the studied technologies, which takes into account the results of the project