

Simulations of radiation hard detectors for timing applications

T. Croci⁽¹⁾, F. Moscatelli^(2,1), D. Passeri^(3,1), A. Morozzi⁽¹⁾,
P. Asenov^(2,1), A. Fondacci⁽³⁾, M. Menichelli⁽¹⁾, G.M. Bilei⁽¹⁾,
V. Sola^(5,4), M. Ferrero⁽⁴⁾, J. Ye⁽⁶⁾, A. Boughedda⁽⁶⁾, G.-F. Dalla Betta⁽⁶⁾

(1) INFN Perugia, Perugia, Italy
 (2) IOM-CNR Perugia, Perugia, Italy
 (3) DI, University of Perugia, Perugia, Italy
 (4) INFN Torino, Torino, Italy
 (5) University of Torino, Torino, Italy
 (6) University of Trento, Trento, Italy

INFN and University of Perugia are involved in WP6 Task 6.2 Simulations of surface and bulk radiation damage for 4D (tracking+timing) detectors toward more radiation tolerant solutions

Calibration/extension of the previously developed simulation models

Calibration/extension of the previously developed models ("New University of Perugia TCAD model" and its recent upgrade) by comparing the simulation findings with measurements carried out on dedicated test structures as well as on different classes of 3D and LGAD detectors.

Study the effect of surface and bulk radiation damage with reference to 4D (tracking+timing) detectors toward more radiation resistance solutions.

The proposed activity will focus specifically on disentangling the effects of the two main radiation damage mechanisms, e.g., the surface damage due to ionizing effect and the bulk damage due to atomic displacement, with reference to 4D detectors toward more radiation resistance solutions.

Extension of the Radiation Damage Model

"PerugiaModDoping"

Perugia0" Bulk/Surface Radiation Damage Model

Surface damage (+ Q_{ox})

Туре	Energy (eV)	Band width (eV)	Conc. (cm ⁻²)
Acceptor	$E_C \le E_T \le E_C$ -0.56	0.56	$D_{IT} = D_{IT}(\Phi)$
Donor	$E_V \le E_T \le E_V + 0.6$	0.60	$D_{IT} = D_{IT}(\Phi)$

- ✓ Bulk damage → Traps concentrations dependence upon the introduction rate η (defects concentration) and the fluence (~ $\eta \times \Phi$)
- ✓ Surface damage → Traps (N_{II} interface trap density) and oxide charge (Q_{ox}) concentrations dependence upon the fluence as follow

stituto Nazional

di Fisica Nucleare

Torino analytical parameterizations

• Gain Layer (Acceptor Removal)

$$N^{\text{peak}}_{A,GL}(\Phi) = N_{A,GL}(0) \cdot e^{-c \cdot \Phi}$$

- **Bulk** (Acceptor Creation)
- ✓ if $0 < \Phi \le 3e15 n_{eq}/cm^2$

$$N_{A,bulk}(\Phi) = N_{A,bulk}(0) + g_c \cdot \Phi$$

if $\Phi > 3e15 n_{eq}/cm^2$

$$N_{A,bulk}(\Phi) = 4,17e13 \cdot \ln(\Phi) - 1,41e15$$

[1] A. Morozzi et. al, PoS (Vertex2019) 050
 [2] M. Ferrero et. al, 34th RD50 Workshop, Lancaster, UK (2019)
 [3] P. Asenov et. al, Nucl. Instrum. Meth. A 1040 (2022) 167180

TCAD simulation of LGAD device

- In collaboration with *INFN Torino*: calibration/extension of the previously developed models by comparing the simulation findings with measurements carried out on different classes of LGAD detectors.
- Comparison with experimental data, before and after irradiation (UFSD2 production, by FBK)

SIMULATED C-V & 1/C²-V – HPK2, Split 1 & 2

MEASURED C-V & 1/C²-V – HPK2, Split 1

SIMULATED C-V & I-V – HPK2, Split 2

SIMULATED I-V – HPK2, Split 1 "PerugiaModDoping"

SIMULATED I-V – HPK2, Split 1 "PerugiaModDoping"

TCAD simulation of **3D** device

- In collaboration with the University of Trento: validation of the previously developed model (*) by comparing the simulation findings with measurements carried out on different classes of 3D detectors.
- Comparison with experimental data, before and after irradiation (FBK R&D, Batch 3)

SIMULATED I-V – Surface Damage Model

✓ Pre & Post-irr.

SIMULATED I-V – *Bulk* Damage Model

Conclusions & Next steps

- ✓ Recent upgrade of the *Perugia radiation damage model* → "PerugiaModDoping"
 - **Traps** parameterization (New University of Perugia TCAD model)
 - **Gain Layer** and **Bulk** effective **doping evolution** with Φ (Torino analytical parameterization)
- The new model has been verified for LGAD devices, by comparing TCAD simulations w/ measurements
 - **UFSD2** production (FBK): static (DC), small-signal (AC) and gain behavior well reproduced
 - **HPK2** production (HPK): DC and AC behavior well reproduced (but **pay attention** to the **impact ionization model**)
 - to measure (w/ β source) and to simulate: gain behavior before and after irradiation
- Validation of the "New University of Perugia TCAD model" with 3D detectors (in collaboration with Trento group for 3D detectors modelling)
 - Perugia Bulk Damage Model can predict the breakdown quite accurately, despite the shape of the I-V curves is quite different from the measured ones
 - CERN Bulk Damage Model is better at predicting the leakage current, but largely overestimates the breakdown voltage
 - To measure: DC behavior and laser response of 3D and trenched-3D detectors, before and after irradiation (up to the fluence of 2,5E15 n_{eq}/cm²)
 - To validate the new model "PerugiaModDoping" against the already-in-house and new measurements

TCAD radiation damage model used

"New University of Perugia model"

- Combined surface and bulk
 TCAD damage modelling scheme^[3]
- Traps generation mechanism

Acceptor removal mechanism

 $N_{GL}(\boldsymbol{\phi}) = N_A(\mathbf{0}) e^{-c\boldsymbol{\phi}}$

where

- Gain Layer (GL)
- c, removal rate, evaluated using the Torino parameterization^[4]

[3] AIDA2020 report, <u>TCAD radiation damage model - CERN Document Server</u>
[4] M. Ferrero et al., *Radiation resistant LGAD design*, Nucl. Inst. And Meth. In Phys. Res. A, November 30, 2018. doi: 10.1016/j.nima.2018.11.121

Surface damage (+ Q_{ox})

Туре	Energy (eV)	Band width (eV)	Conc. (cm ⁻²)
Acceptor	$E_C \le E_T \le E_C$ -0.56	0.56	$D_{IT} = D_{IT}(\Phi)$
Donor	$E_V \le E_T \le E_V + 0.6$	0.60	$D_{IT} = D_{IT}(\Phi)$

Bulk damage

Туре	Energy (eV)	η (cm ⁻¹)	σ _n (cm²)	σ _h (cm²)
Donor	E _C - 0.23	0.006	2.3×10 ⁻¹⁴	2.3×10 ⁻¹⁵
Acceptor	E _C - 0.42	1.6	1×10 ⁻¹⁵	1×10 ⁻¹⁴
Acceptor	E _C - 0.46	0.9	7×10 ⁻¹⁴	7×10 ⁻¹³

Acceptor Removal – the c formula

Acceptor removal mechanism

 $N_{GL}(\phi) = N_A(0)e^{-c\phi}$

where

- Gain Layer (GL)
- c, removal rate, evaluated using the Torino parameterization^[4]

[4] M. Ferrero et al., *Radiation resistant LGAD design*, Nucl. Inst. And Meth. In Phys. Res. A, November 30, 2018. doi: 10.1016/j.nima.2018.11.121

AIDAinnova, WP6 Meeting, February 2022

V. Sola

Acceptor Doping Evolution with $\boldsymbol{\Phi}$

✓ Bulk effective acceptor doping

- Torino Bulk analytical parameterization (Acceptor Creation)
- \checkmark if 0 < $\Phi \le 3e15 n_{eq}/cm^2$

 $N_{A,bulk}(\Phi) = N_{A,bulk}(0) + g_c \cdot \Phi$ where $g_c = 2,37e-2 \text{ cm}^{-1}$ \checkmark if $\Phi > 3e15 n_{eq}/cm^2$ $N_{A,bulk}(\Phi) = 4,17e13 \cdot \ln(\Phi) - 1,41e15$

[M. Ferrero et. al, *Recent studies and characterization on UFSD sensors, 34th RD50 Workshop, Lancaster, UK (2019)]*

SATURATION

✓ Saturation of radiation effects **observed** @ $\Phi > 5E15 n_{eq}/cm^2$

Silicon detectors irradiated @ Φ 1E16 – 1E17 n_{eq}/cm² behave better that expected

New series of Perudia models

					uyi					
	etaA1 (cm^-1) etaA	12 (cm^-1) eta	D (cm^-1) Em	idA1 (eV) Em	idA2 (eV) Em	idD (eV) hx	A1 (cm^2) h	xA2 (cm^2) e	xD (cm^2)	
Case 1	1.6	0.9	0.006	0.42	0.46	0.23	1.00E-14	7.00E-13	2.30E-14	
Case 2	1.6	0.9	0.006	0.42	0.545	0.23	1.00E-14	1.00E-14	2.30E-14	"New Univers
Case 3	1.6	0.9	0.2	0.42	0.545	0.23	1.00E-14	1.00E-14	2.30E-14	
Case 4	1.6	0.9	0.2	0.42	0.46	0.23	1.00E-14	7.00E-13	2.30E-14	We always have
Case 5	1.6	0.9	0.02	0.42	0.545	0.23	1.00E-14	1.00E-14	2.30E-14	and one donor
Case 6	1.6	0.9	0.02	0.42	0.46	0.23	1.00E-14	7.00E-13	2.30E-14	
Case 7	1.6	0.9	0.01	0.42	0.46	0.23	1.00E-14	7.00E-13	2.30E-14	eta: introductio
Case 8	1.6	0.9	0.015	0.42	0.46	0.23	1.00E-14	7.00E-13	2.30E-14	Emid: mid-ener
Case 9	1.6	0.9	0.015	0.42	0.46	0.23	1.00E-14	1.40E-12	2.30E-14	band of traps;
Case 10	1.6	0.9	0.015	0.42	0.46	0.23	5.00E-14	7.00E-13	2.30E-14	hx/ex: capture
Case 11	1.6	1.5	0.015	0.42	0.46	0.23	1.00E-14	7.00E-13	2.30E-14	exA = hxA/10, h
Case 12	2	0.9	0.015	0.42	0.46	0.23	1.00E-14	7.00E-13	2.30E-14	
Case 13	2.5	0.9	0.015	0.42	0.46	0.23	1.00E-14	7.00E-13	2.30E-14	
Case 14	3	0.9	0.015	0.42	0.46	0.23	1.00E-14	7.00E-13	2.30E-14	
Case 15	5	0.9	0.015	0.42	0.46	0.23	1.00E-14	7.00E-13	2.30E-14	BEST CASE
Case 16	10	0.9	0.015	0.42	0.46	0.23	1.00E-14	7.00E-13	2.30E-14	squares of
Case 17	10	0.9	0.015	0.42	0.46	0.23	1.00E-14	4.00E-13	2.30E-14	simulated and
Case 18	10	1.2	0.015	0.42	0.46	0.23	1.00E-14	4.00E-13	2.30E-14	important para

"New University of Perugia TCAD model" ^[2]
We always have two acceptor levels (A ₁ , A ₂) and one donor level (D)
eta : introduction rate; Emid : mid-energy level of uniformly distributed band of traps;
hx/ex : capture cross sections for holes/electrons exA = $hxA/10$, $hxD = exD/10$

the one for which the sum of relative differences between d experimental values of all important parameters is minimized

[2] AIDA2020 report, TCAD radiation damage model - CERN Document Server.

TCAD simulation of **PIN** device

di Fisica Nucleare

- In collaboration with *INFN Torino*: calibration/extension of the previously developed models by comparing the **simulation findings** with **measurements** carried out on different classes of **PIN** detectors.
- **Comparison** with **experimental data**, **before** and **after irradiation** (UFSD2/UFSD3.2 production, by FBK)

HPK2

- ✓ 2nd sensor **HPK production**
- ✓ R&D for the ATLAS and CMS timing detectors
- ✓ Deep and narrow multiplication layer
- ✓ High-resistivity bulk

Wafers of the HPK2 Production

Small

Small

Small

Small

 \checkmark 4× splits of p-gain dose (1, 2, 3 and 4)

□ I-V and C-V meas. curves, pre-irr.

C-V meas. curves, post-irr. w/ neutrons

Table A.11

Devices in the HPK2 Production

Layout	Device geometry	Edge	Inter-pad		
	Single pad	SE3	-		
	2×2	SE3	IP3	Pad size:	
	2×2	SE3	IP4		
	2×2	SE3	IP5	1,25 X 1,25 mm ²	
	2×2	SE3	IP7		
Small	2×2	SE5	IP5	Edge distance:	
Sillali	3×3	SE3	IP5	200	
	5×5	SE3	IP3	300 µm	
	5×5	SE3	IP4		
	5×5	SE3	IP5		
	5×5	SE3	IP7	SINGLE	
	5×5	SE5	IP7	SINGLE	
	5×5	SE3	IP4		
	5×5	SE3	IP5	HPK	
	5×5	SE3	IP7		
Large	5×5	SE5	IP7		
	8 imes 8	SE5	IP7	F	
	15 imes 15	SE3	IP7		
	16 imes 16	SE5	IP7		
	30 imes 15	SE3	IP7		
	32 imes 16	SE5	IP7		

Table A.10

25, 28

31.33

36.37

42,43

M. Ferrero et al., An Introduction to Ultra-Fast Silicon Detectors, 1st ed., CRC Press (2021).

I-V and C-V meas. curves, pre and post-irr. w/ neutrons

Wafer # Wafer layout Split of *p*-gain dose Target breakdown voltage [V] @ RT

2

1 (highest p-dose)

4 (lowest p-dose)

160

180

220

240

MEASURED C-V and 1/C²-V – HPK2

M. Ferrero et al.

AIDAinnova, WP6 Meeting, October 2022

SIMULATED doping profiles – HPK2, Split 1

SIMULATED C-V and 1/C²-V – HPK2, Split 1

Avalanche model: Massey. Temperature 300 K. Frequency 1 kHz. Electrical contact area 1,25 x 1,25 mm²

SIMULATED doping profiles – HPK2, Split 1

DA

MEASURED C-Vs – HPK2, Split 1, W28

AIDAinnova, WP6 Meeting, October 2022

ISTITUTO OFFICINA

DEI MATERIALI

Istituto Nazional

di Fisica Nucleare

MEASURED C-Vs – HPK2, Split 2, W33

di Fisica Nucleare

✓ Post-irr. (Φ = 4,0E14 n_{eq}/cm²)

SIM vs. MEAS

SIM. vs MEAS. C-V & $1/C^2$ -V – HPK2, Split 1

✓ Post-irr. (Φ = 8,0E14 n_{eq}/cm²)

SIM vs. MEAS

SIM. vs MEAS. C-V & 1/C²-V – HPK2, Split 1

✓ Post-irr. (Φ = 1,5E15 n_{eq}/cm²)

SIM vs. MEAS

SIM. vs MEAS. C-V & 1/C²-V – HPK2, Split 1

✓ Post-irr. (Φ = 2,5E15 n_{eq}/cm²)

SIM vs. MEAS

✓ Pre-irr.

SIMULATED doping profiles – HPK2

SIMULATED C-V and 1/C²-V – HPK2, pre-irr.

Temperature 290 K. Frequency 1 kHz. Electrical contact area 1,25 x 1,25 mm²

AIDAinnova, WP6 Meeting, April 2023

