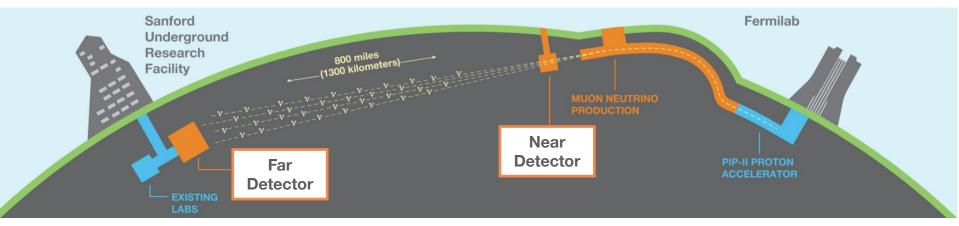


2nd ANNUAL MEETING Valencia, 24-27 April 2023

CIEMAT R&D on light readout for cryogenic neutrino detectors (WP9)

CIEMAT Neutrino Group


Rodrigo Álvarez, Enrique Calvo, Aritz Canto, José I. Crespo-Anadón, Clara Cuesta, <u>Inés Gil-Botella</u>, Ignacio López de Rego, Sergio Manthey, Iván Martín, Carmen Palomares, Laura Pérez, Andrés de la Torre, Antonio Verdugo

26 April 2023

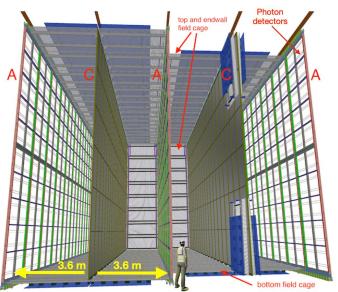
LAr TPCs for neutrino physics

DUNE: The flag-ship for the upcoming decades

DUNE SCIENCE GOALS:

- Precision neutrino oscillation measurements
- Low energy neutrinos (SN & solar)
- Beyond Standard Model Physics

DUNE Phase I: FD1-HD + FD2-VD


- Technologies decided (under development/ production)

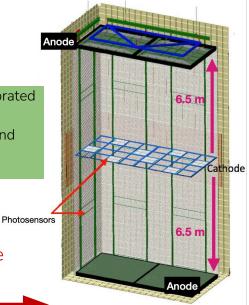
DUNE Phase II: opportunity for R&D on LAr TPCs

DUNE FD-Phase I: first two FD modules

DUNE FD1 (HD) Single Phase + Horizontal Drift

- Charge readout based on wires

- Light readout behind wires based on SiPM photon collectors


- Charge readout based on perforated PCBs

- Light readout on the cathode and walls based on SiPM photon collectors

Move to a cheaper and more efficient configuration

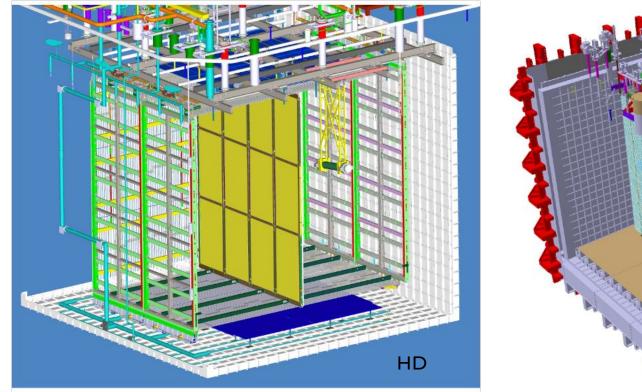
DUNE FD2 (VD)

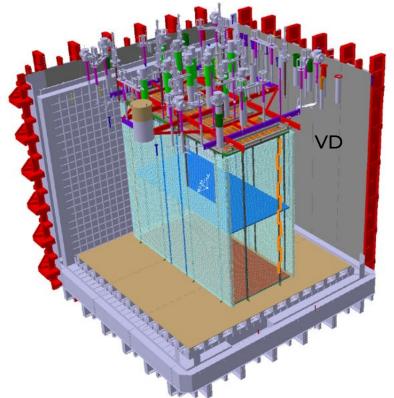
Single Phase + Vertical Drift

000

ProtoDUNE-DP

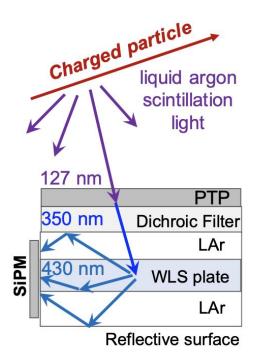
R

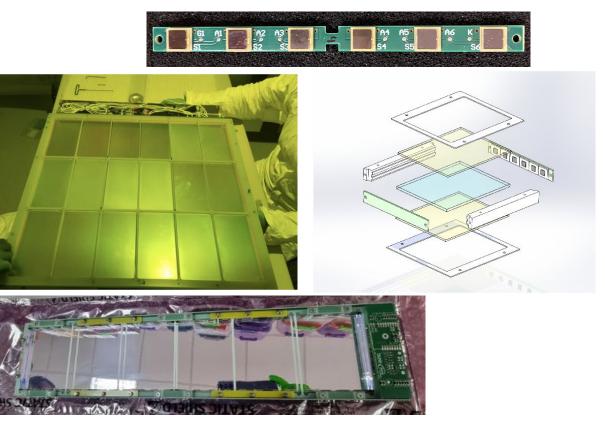

10.


CÉRN

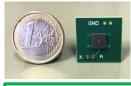
71

ProtoDUNE-SP


ProtoDUNE-HD & ProtoDUNE-VD at CERN



Photon Detectors for DUNE: X-ARAPUCAs



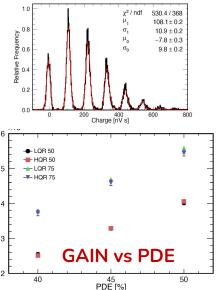
R&D related to PDS FD1-HD

Final results of HPK SiPM characterization

● S - 61 A1 - 52 + 83 - 53 - 54 - 64 A5 - 66 K - 66 ●

SiPM development in collaboration with Hamamatsu and FBK:

- New cryogenic sensors fulfilling the DUNE requirements
- Appropriate to be used in X-ARAPUCAs

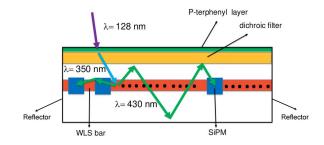

Characterization and cryo reliability tests of

standalone SiPMs and groups of 6 sensors per PCB (ganging mode):

- At room T and after 20 thermal cycles in LN_2
- IV-curves, gain, S/N, DCR, cross-talk, afterpulses
- Individual and ganged tests

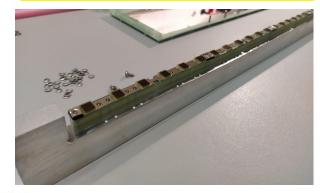
HPK MPPC models

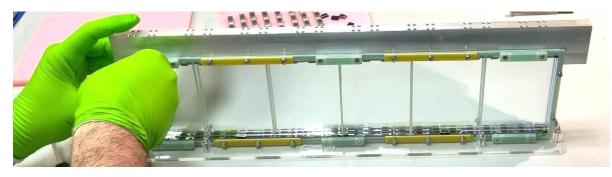
Model	Characteristics	Ι
HPK S13360-9932	Cell pitch 50μ m, low quenching	† I
50μ -LQR	resistance (280 k Ω) at 77 K	
HPK S13360-9933	Cell pitch 50μ m, high quenching	1
50μ -HQR	resistance (660 k Ω) at 77 K	
HPK S13360-9934	Cell pitch 75μ m, low quenching	e
75μ -LQR	resistance (280 k Ω) at 77 K	Gain [e ⁻]
HPK S13360-9935	Cell pitch 75 μ m, high quenching	
75μ -HQR	resistance (660 k Ω) at 77 K	
		I,


RESULTS for selected HPK 75-HQR

(paper ready to be submitted to journal)

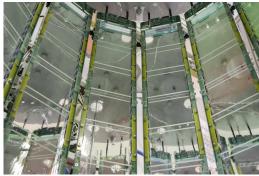
Parameter	Requirement	Test Result (Mean/Std Dev)
Gain	2 to 8.10^{6}	$5.7 \cdot 10^6 / 9.08 \cdot 10^4$
Cross-talk probability	<35% at Vop	13.62% / 1.29%
After-pulsing probability	<5% at Vop	1.49% / 0.35%
Global DCR	< 100 mHz/mm ²	73.68 mHz/mm ² / 26.6 mHz/mm ²
Thermal cycles	>20	Negligible variation on V_{bd}
		R_q after 20 cycles




74 X-ARAPUCA supercells assembly

Assembly and testing 74 (out of 160) X-ARAPUCAs at CIEMAT prior to their installation in ProtoDUNE at CERN

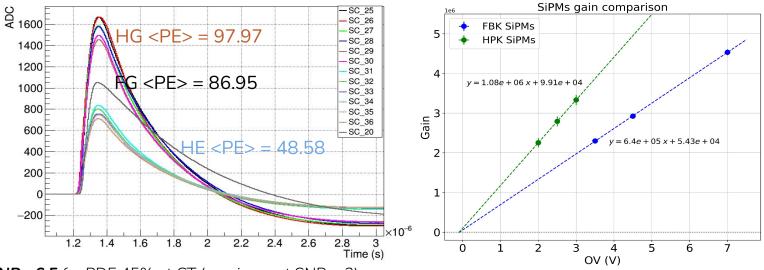
74 X-ARAPUCA supercells testing



@ CIEMAT

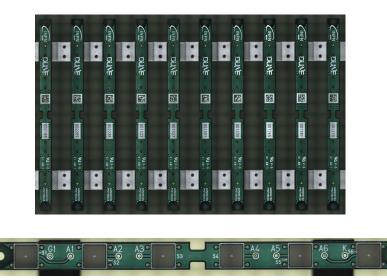
- A vessel with 300 l of Liquid N₂ accommodating **up to 14 XA's**
- Light from 405nm Laser
- CIEMAT tested 74 XA out of 160

SiPM type	WLS bar type	Number
HPK	Glass2Power	16
HPK	Eljen	34
FBK	Glass2Power	14
FBK	Eljen	10

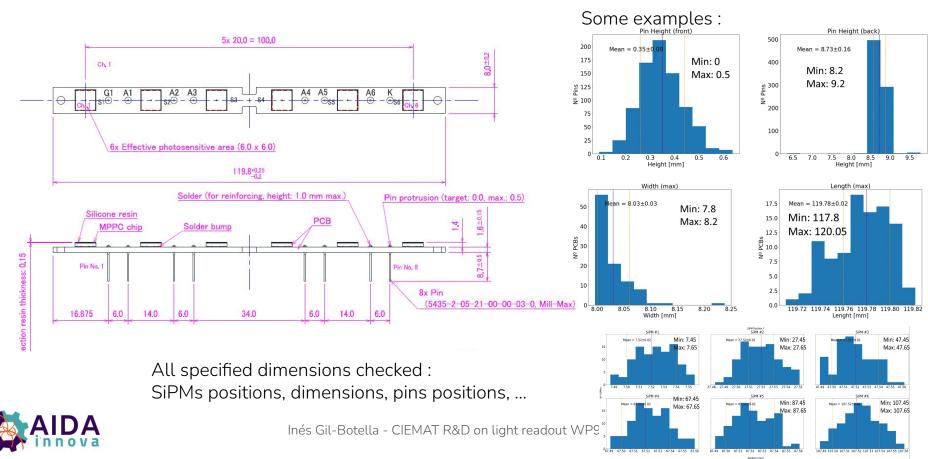


74 X-ARAPUCA supercells test results

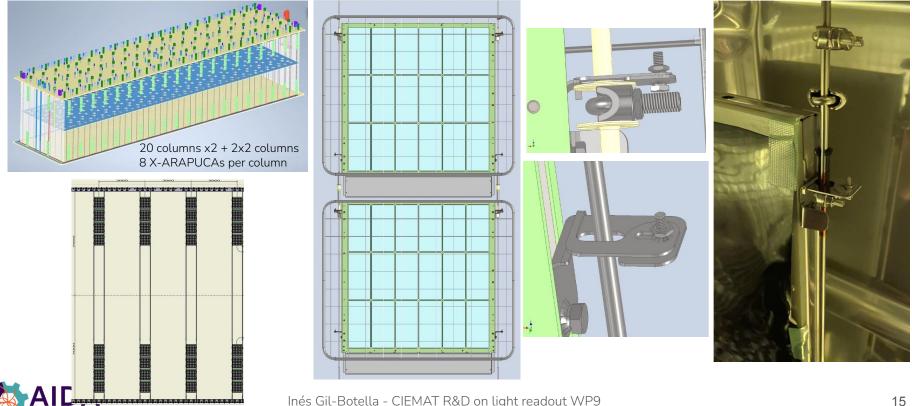
- 3 X-ARAPUCA configurations tested: HPK+G2P (HG), FBK+G2P (FG) and HPK+Eljen (HE)
- Goals:
 - Test their correct operation at cryogenic temperature
 - Characterization in terms of: gain, SNR and Dark Current Rate


- SNR ~6.5 for PDE 45% at CT (requirement SNR > 2)
- Dark count is below requirement (<1.7 kHz) at CT except for Eljen WLS plates

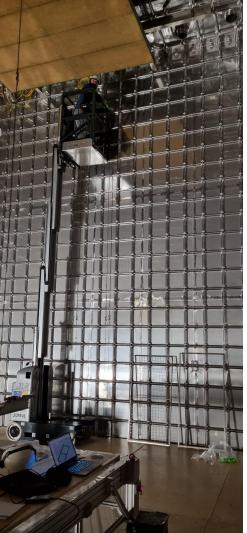
Production phase: Mechanical measurements of SiPM boards

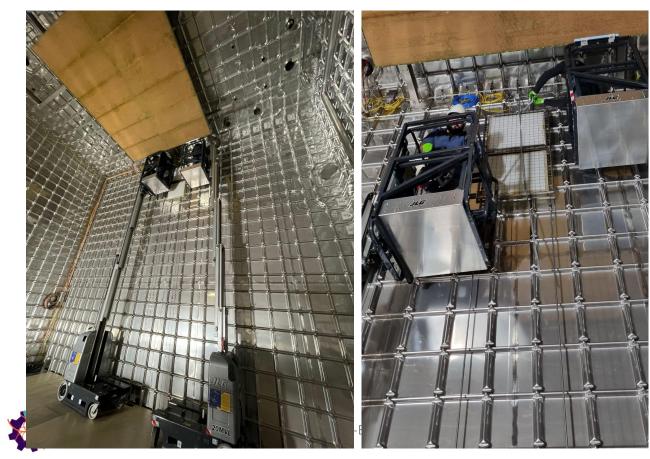


Measurements made with a 3D vision machine Model: QUICK VISION Active 404 Precision: ±1.5 µm

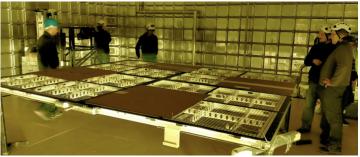

Production phase: Check real dimensions agains specs

R&D related to PDS FD2-VD


Membrane X-ARAPUCAs mechanical design and production for DUNE FD2



XAs installation in ProtoDUNE-VD



ProtoDUNE-VD

Installation of XAs on cathode

Tests of SiPMs in flexi boards

Aim:

- Check the reliability of the soldering in LN,
- Check that there are no SiPMs with high DCR
- Check that all SiPMs are well connected to the board

Tests sequence:

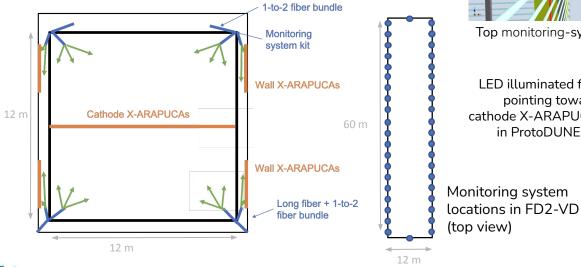
IV reverse at room temperature to verify operation before thermal cycling IV reverse in LN_2 (2nd cycle thermal cycle) Dark Counts Rate in LN_2 (3rd thermal cycle)

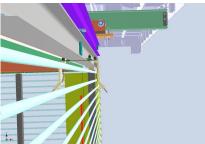
Check SiPMs connection illuminating them one by one (room temperature)

Test results:

- \rightarrow All the boards passed the tests
- IV results in specifications \rightarrow
- No bad connections found on the SiPMs soldering to the flex boards \rightarrow

Test setup with 8 flex-boards connected to HD cold amplifiers (8 channels)


Flex-board	RT	LN2	Flex-board	DCR (Hz)		
Tiex-board	V_BR (V)	V_BR (V)	200011	194,56		
200011	51,80	41,90	200035	127,57		
200035	51,95	42,00	200034	192,41		
200034	51,90	42,05	200026	168,89		
200026	51,90	41,90				
200033	51,90	42,00	200033	297,66		
200032	51,95	41,90	200032	137,43		
200031	51,90	41,90	200031	403,72		
200017	51,85	41,90	200017	334,11		
200006	51,90	41,90	200006	166,59		
200007	51,90	41,90	200007	380,97		
200030	51,95	42,00	200030	301,77		
200008	51,90	41,90	200008	637,97		
200009	51,85	41,90				
200021	51,90	41,95	200009	306,47		
200010	51,85	41,90	200021	422,84		
Average	51,89	41,93	200010	602,96		
/max-Vmin	0,15	0,15	Average	311,73		



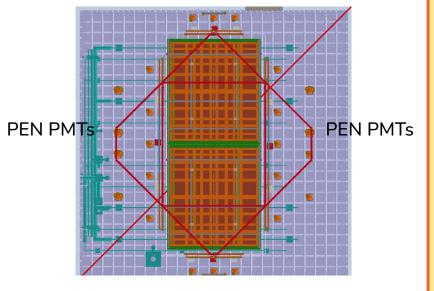
Inés Gil-Botella - CIEMAT R&D on light readout WP9

F2-VD Light Response Monitoring System

- Based on guartz fibers solarization resistant ٠ (two models tested in ProtoDUNE-VD).
- For every X-ARAPUCA membrane column ٠ (44 total columns) two monitoring-system kits are installed at the top/bottom beams that support the field cage

Top monitoring-system kit

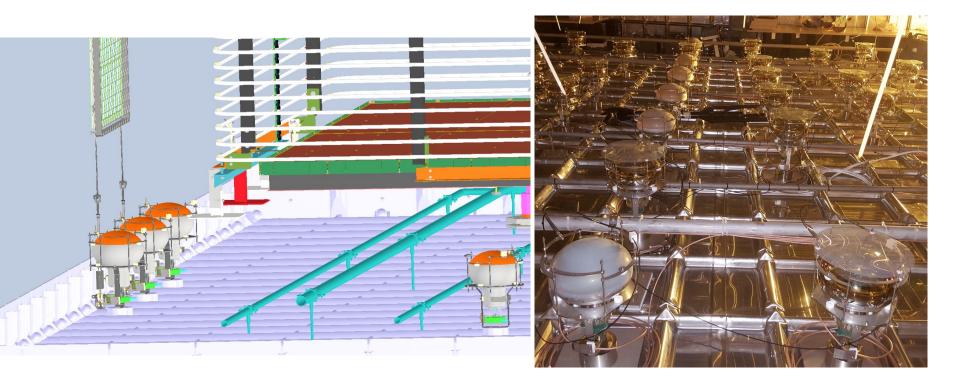
Monitoring-system kit installation in ProtoDUNE-VD



Inés Gil-Botella - CIEMAT R&D on light readout WP9

PMT installation in ProtoDUNE-VD

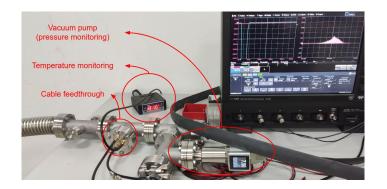
TPB PMTs



TPB PMTs

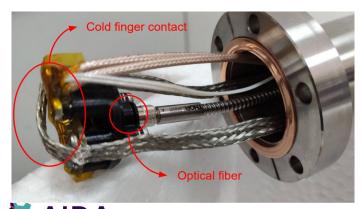
- Installation of 24 PMTs from ProtoDUNE-DP to ProtoDUNE-VD outside the field cage
- <u>Goals</u>:
 - Monitor the light yield
 - PDE X-ARAPUCA efficiency measurement by comparing with PMT QE
 - Study scintillation light production, propagation and absorption
- Successful and stable operation of PMTs in ProtoDUNE-DP with well known performance

PMT installation in ProtoDUNE-VD



R&D on photon detectors and development of cryogenic setups

VUV SiPM characterization at LN₂ temperature



Measured by manufacturer

- VUV4 SiPM Hamamatsu, model S13370-6075CN
- PDE at cold can be computed by comparing the number of PEs detected sending the same amount of light at room and cryogenic T (obtained with a cold finger)

- 1. Calibration measurements at RT for three different OV values.
- 2. High-intensity light pulses at RT for different wavelengths.
- 3. Cooldown of the system to LN_2 temperature.
- 4. Calibration measurements at CT for three different OV values.
- 5. High-intensity light pulses at CT for different wavelengths.

40⊤																						DT
35-																					÷	RT CT
									•			•										
30-		•	b					•		2			•									
25			•	"		•••	•••	•						•			_					
20					•				٠				•	1	•							
20					••				•							•		Y				
15															٨	r						
10-						•	•					F						•				
10					•				1	P	K								•	•		
5									0												•	•
0																						
1	.00	150	20	0 2	50 3	300	35	0 4				005 ngth			65	50	/00	750) 8	00 8	850	900
-	2~			of	+ha			~ +				nic t			rat	-	`					

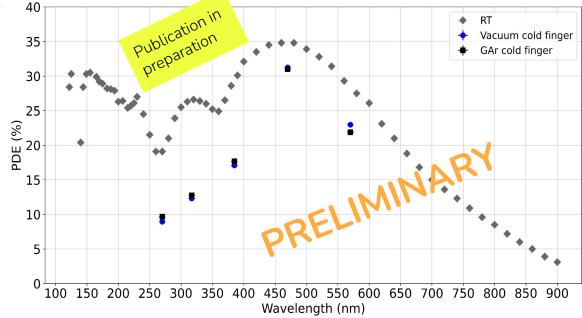
VUV SiPM characterization at cryo T

RESULTS

Wavelength (nm)	PDE_CT (%)
270	8.94 ± 0.21
280	9.71 ± 0.22
317	12.31 ± 0.24
355	12.41 ± 0.22
385	17.09 ± 0.22
405	18.58 ± 0.25
420	22.98 ± 0.26
470	31.25 ± 0.25
570	22.97 ± 0.23

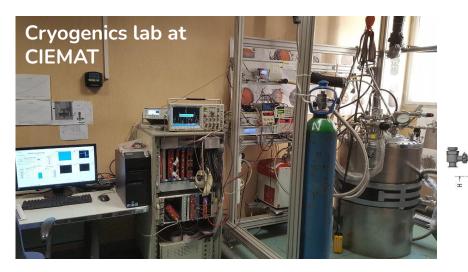
•

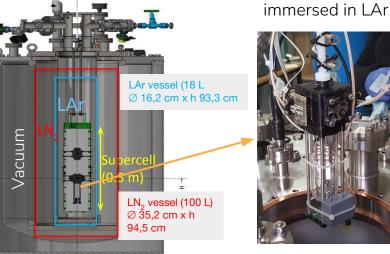
It also depends on the wavelength

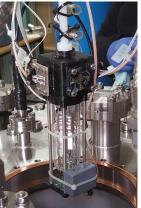

VUV SiPM characterization at cryo T (crosscheck)

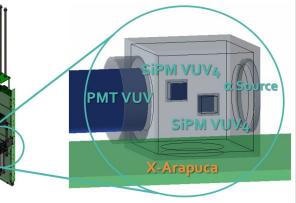
- A second system with GAr is used for comparison
- Both methods provide similar results

	PDE_CT (%)						
Wavelength (nm)	Cold finger vacuum setup	GAr setup					
270	8.94 ± 0.21	9.66 ± 0.23					
317	12.31 ± 0.24	12.75 ± 0.25					
385	17.09 ± 0.22	17.67 ± 0.28					
470	31.25 ± 0.25	31.01 ± 0.37					
570	22.97 ± 0.23	21.87 ± 0.31					

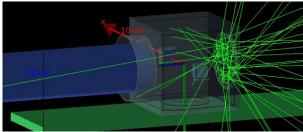

RESULTS


270, 317, 385, 470 and 570 nm light sources used




X-ARAPUCA detection efficiency setup

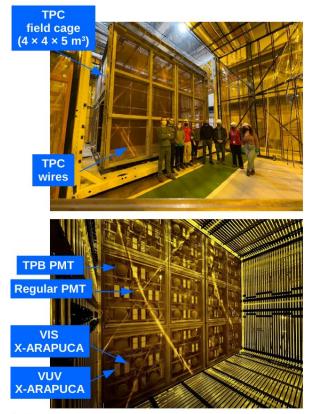
- The efficiency is measured from the reference SiPMs with known efficiency
- 2 VUV sensitive SiPMs are symmetrically placed with respect to the X-ARAPUCA and the **α source** (²⁴¹Am)
- 1" PMT (VUV sensitive) is used to get the τ_{slow} and scintillation light monitoring
- 3 configurations of XA tested: WLS plates from Eljen and Glass to Power and SiPMs from HPK and FBK



Final results of DUNE FD1-HD X-ARAPUCA detection efficiency

SiPN

Method (A): reference SiPM comparison

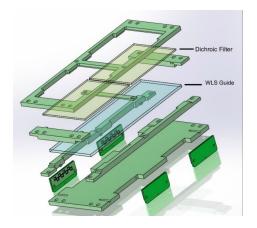

$$\boldsymbol{\epsilon}_{\boldsymbol{A}}(\boldsymbol{X}\boldsymbol{A}) = \frac{PE_{mm^2}(\boldsymbol{X}\boldsymbol{A})}{PE_{mm^2}(SiPM)} \cdot f_{corr} \cdot \boldsymbol{\epsilon}(SiPM)$$

Μ	ethod	(B): simulatio	n based $\epsilon_B(X)$	$\mathbf{(A)} = 100 \cdot \frac{PE(\mathbf{X})}{\gamma_{expec}}$	$\frac{f(A)}{cted} \cdot f'_{c}$	orr
	Method	PDE (FBK + EJ) %	PDE (HPK + EJ) %	PDE (HPK + G2P) %	Publicat prepar	ion in ation
	(A)	1.63 ± 0.12	1.78 ± 0.14	2.38 ± 0.18	•	Results from both methods in agreement
	(B)	1.56 ± 0.12	1.72 ± 0.14	2.28 ± 0.19	•	G2P plates present a higher efficiency

SBND Photon Detection System

120 8" Hamamatsu R5912 Cryogenic PMTs mounted behind the wire planes

 \rightarrow 96 coated with TPB, 24 uncoated


192 X-ARAPUCAs

 \rightarrow Half coated with pTP, half uncoated

Wavelength-shifting (TPB) reflector foils on the Cathode Plane Assembly.

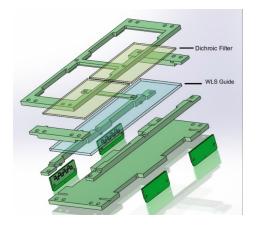
Start of operations by the end of 2023

SBND X-ARAPUCA

SBND Photon Detection System

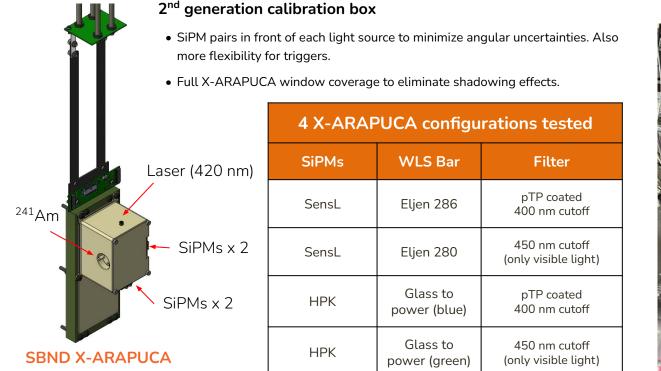
120 8" Hamamatsu R5912 Cryogenic PMTs mounted behind the wire planes

 \rightarrow 96 coated with TPB, 24 uncoated


192 X-ARAPUCAs

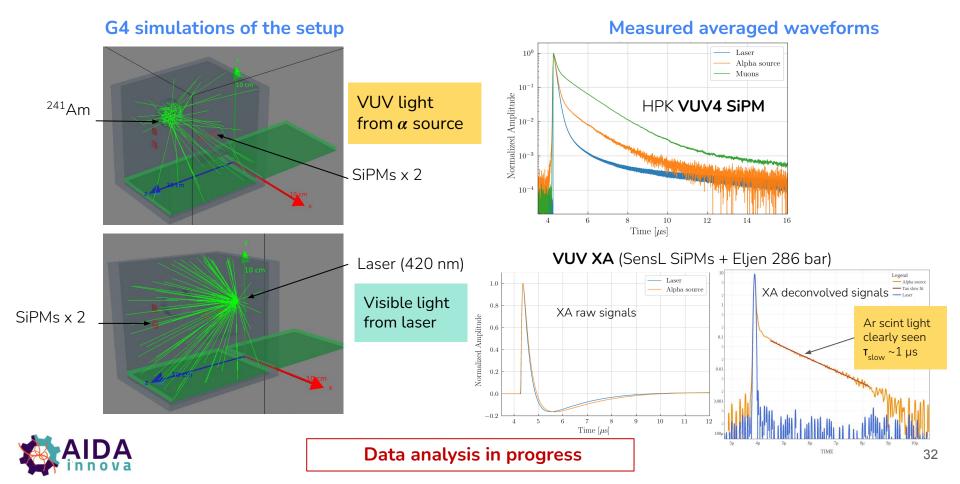
 \rightarrow Half coated with pTP, half uncoated

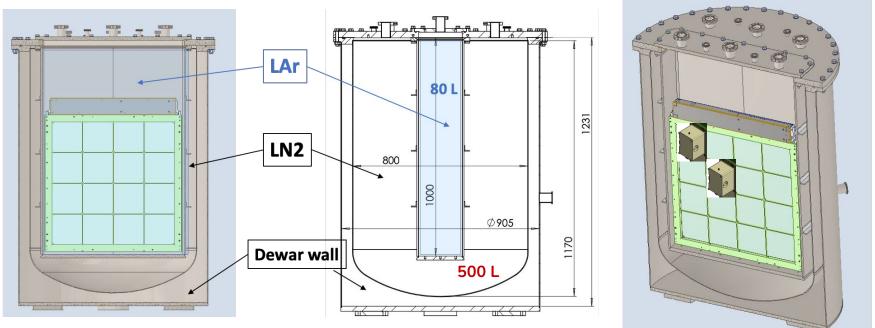
Wavelength-shifting (TPB) reflector foils on the Cathode Plane Assembly.


Start of operations by the end of 2023

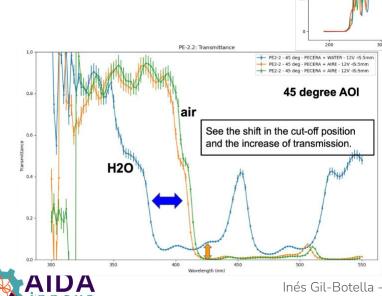
SBND X-ARAPUCA

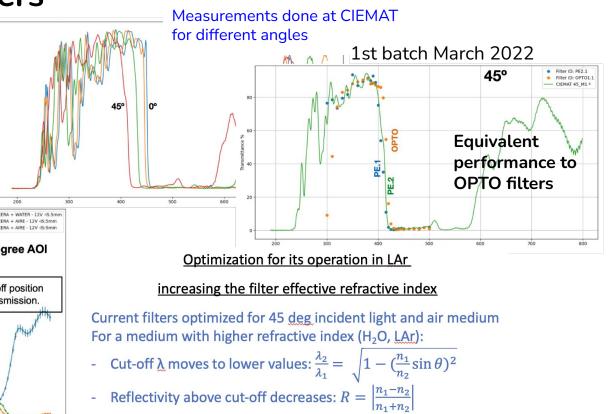
Measurements of SBND X-ARAPUCA PDE




First measurements of PDE for both VUV and visible light

Preliminary tests of SBND X-ARAPUCA PDE

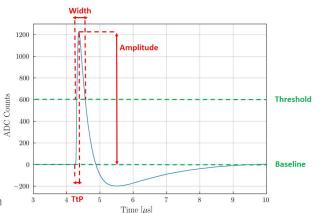

New setup for FD2-VD X-ARAPUCA modules PDE measurement


- PDE measurement in several positions by moving the calibration box (with α-source + 4 VUV SiPM reference sensors) to different windows
- Same methodology, same cryogenics system, bigger vessels to allocate larger X-ARAPUCAs

R&D on dichroic filters

Spanish company Photon-Export able to provide high quality filters

R&D on DAPHNE front-end readout electronics


New Firmware developments for DAPHNE V3 (under design) based on the new Xilinx KRIA SOM that will replace current FPGA and MCU. Now working on DAPHNE V2A:

- Design and implementation of a **self-trigger algorithm** for zero suppression, based on signal amplitude coincidence on two channels (same VD X-ARAPUCA).
- **Real-time calculation** of different parameters (trigger primitives) from the SiPM's waveform:
 - Peak Time
 - Width (signal width above threshold)
 - Amplitude (at peak-time)
 - Charge (area above baseline)
 - Number of PEs

The **online PDS trigger algorithm** in the DAQ will use those parameters for the global trigger decision (also working in the algorithm definition using signal and background simulation)

Summary

CIEMAT neutrino group is involved in R&D for light readout systems for LAr TPCs

- 1. R&D on **new cryogenic SiPM models** for DUNE \rightarrow final characterization results
- 2. Development of assembly and test facilities for cryogenic photon detector systems at large scale
 - a. Including a **dedicated setup for absolute VUV light detection efficiency at cryogenic temperature** (being used for DUNE FD1, SBND, DUNE FD2 photon detectors)
- 3. Design and production of dedicated PDS mechanical and calibration systems for the DUNE FD2 Photon Detection System \rightarrow being tested in ProtoDUNE-VD at CERN
- 4. **Optimization of photon collectors** (X-ARAPUCAs)
 - a. Dichroic filters
 - b. Front-end electronics
- 5. Starting an effort on **alternative photon detectors** to increase the photocoverage and PDE

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

GRACIAS!

