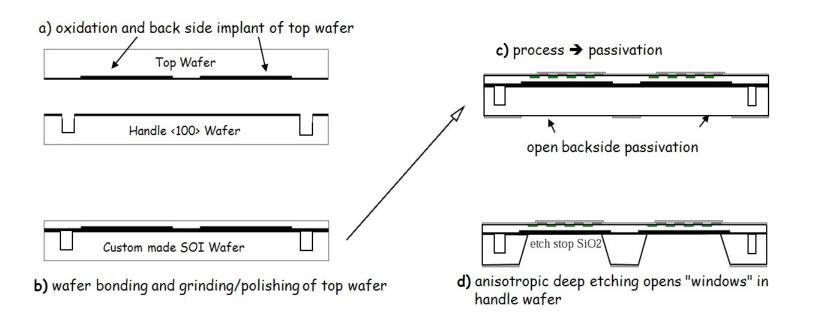
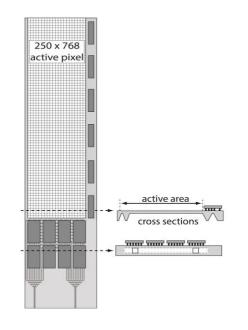


AIDAinnova WP10 @ MPG HLL, Munich


- direct wafer bonding and post-processing -


Laci Andricek for the HLL team

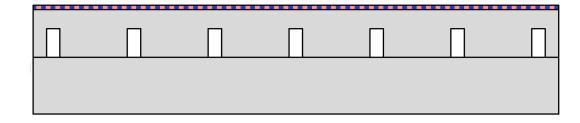
Current Processing Scheme

- Designed for DEPFET sensors for HEP applications

 - Wafer bonding/SOI fabrication first, processing of wafers with cavities (C-SOI)
- More flexibility, if cavities are introduced in a post-process step

Post-processing – key technology modules

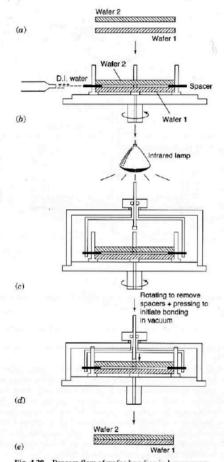
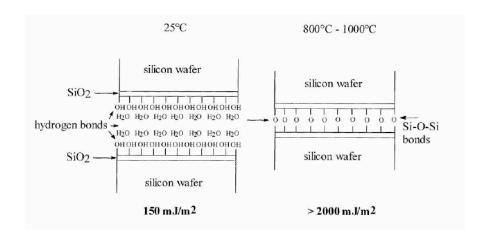
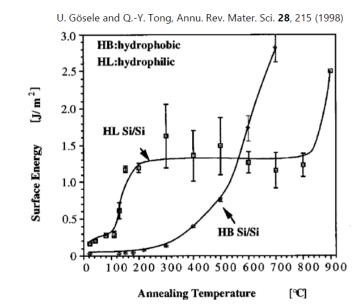


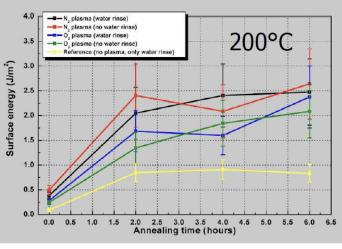


- ▷ CMOS wafer w/o backside implant
 - → Up to 8" wafers, polished backside
- □ ICP-DRIE of micro-channels → to be installed at HLL
 - → Stop on BOX or just after desired etch depth

- Direct wafer bonding (oxide-oxide) → to be installed at HLL
 - → Has to be a low temperature process, < 400 °C
 - → metals on top, implants ...
- Optional thinning of wafer stack

Direct Wafer Bonding - reminder


Fig. 4.20 Process flow of wafer bonding in low vacuum.

Q.-Y. Tong and U. Gösele "Semiconductor Wafer Bonding" John Wiley & Sons, Inc.

- - → Needs just clean, (very) smooth surfaces
- - → → not BEOL compatible
- bonding in UHV or with prior plasma treatment reduces annealing temp. well below 400°C

"Plasma Activation – An Enabling Technology for Wafer Bonding", Eric F. Pabo, EV Group, Semicon West 2010

2nd round of testing at EVG, Austria

- > 1st DWB tests at equipment manufacturer EVG very successful
 - → Focused on bonding of implanted oxide, tests still yielded surface energies of about 1 J/cm² (reported at last workshop)
- ▷ 2nd round to optimize surface energy at low annealing temperature
 - → Twelve 6" DSP FZ wafer pairs prepared at HLL (oxidation, cleaning)
 - → six pairs as path finder for best parameter set (plasma/atmosphere/temperature)

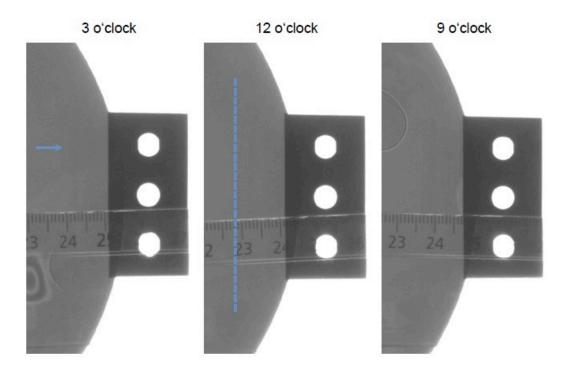
Plasma Activation Activation of both wafer surfaces in the LTM of the Gemini system

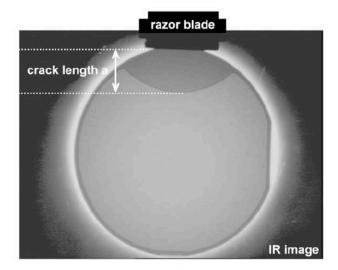
Single Wafer Cleaning • DIW cleaning with JetNozzle in the CLM of the Gemini system

Pre-Bonding •Bonding with center pin in the Pre-bond module of the Gemini system (ambient conditions or vacuum) or in an EVG301 system (ambient conditions)

Thermal annealing • Annealing of the bonded wafers in an EVG5xx bond module

Determination of bond strength - Maszara method





▷ After bonding and annealing insert blade and measure resulting crack length, simplified:

$$\gamma = \frac{3}{32} \cdot \frac{Et_w^3 t_b^2}{a^4}$$

▷ In real life more difficult to see, measured at three locations along the wafer circumference

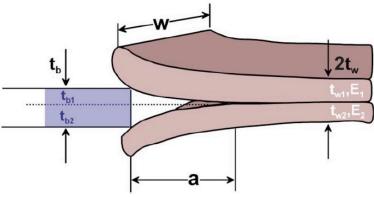
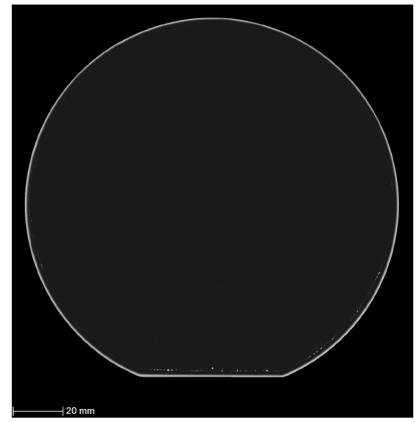
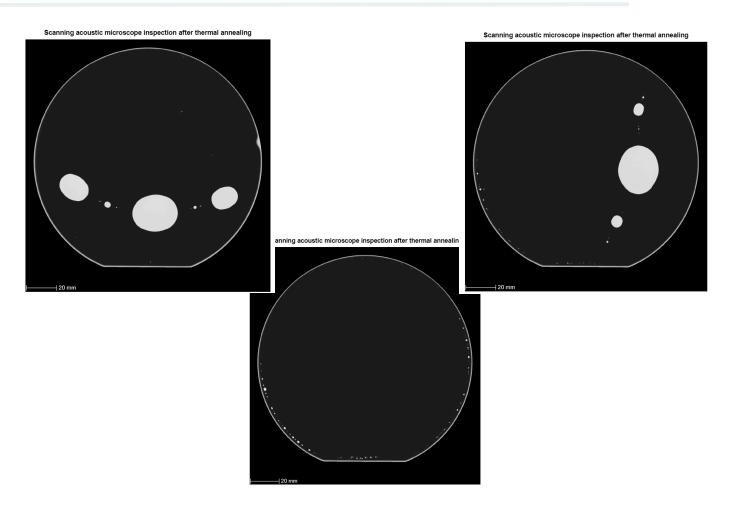
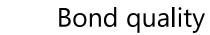


Fig. 24. (Top) IR image of a crack opening initiated by a razor blade. Crack length can be measured as indicated. (Bottom) Schematic diagram of the crack opening method (also known as double-cantilever beam test).

Christiansen et al.: Wafer Direct Bonding, Vol. 94, No. 12, December 2006 | Proceedings of the IEEE




Bond results



> 9/12 bonds look like this

> 3/12 bonds with edge voids and larger area voids due to particles or surface quality variations

bond #	plasma	environment	annealing	bond (J/m²)	voids
1	EVG baseline	ambient	200°C/5h	1.76	edge voids
2	EVG baseline	ambient	150°C/5h	1.72	large area voids
3	EVG baseline	vacuum	EVG baseline	1.56	zero
4	high ion flux	vacuum	200°C/5h	1.20	zero
5	med. ion flux, low energy	vacuum	150°C/5h	1.23	in handling area
6	EVG baseline	ambient	EVG baseline	2.20	few edge, one center
7	EVG baseline	ambient	EVG baseline	2.15	large area voids
8	EVG baseline	ambient	EVG baseline	2.28	edge voids
9	EVG baseline	ambient	EVG baseline	1.93	edge voids
10	EVG baseline	ambient	EVG baseline	2.14	edge voids
11	EVG baseline	ambient	EVG baseline	1.87	edge voids
12	EVG baseline	ambient	EVG baseline	1.83	edge voids

In Summary

- > Key technology modules are ICP-DRIE ("Bosch process") and plasma assisted direct wafer bonding
- □ Qualification runs with low temperature bonds at the equipment manufacturer EVG showed very promising results.
 - → Bond energies of plasma activated bonds after low temperature annealing (below 350 °C) are around 2 J/cm², comparable to high-temperature annealed bonds.
- Next steps:
 - → Prepare C-SOI wafer with realistic micro-channel geometry, wafer bonded at low temperature, and conduct pressure tests
 - → in parallel continue qualification, purchasing and installation of DRIE and DWB equipment.
 - Thanks for your attention
 - This is the way