OBELIX for the Belle II Experiment

Maximilian Babeluk

on behalf of the Belle II VTX collaboration

AIDAinnova 2nd Annual meeting

Apr 25th 2023

Apr 25th 2023 1/23

10

8

4

2

2019

^{peak} Luminosity [x10³⁵cm₂s⁻¹]

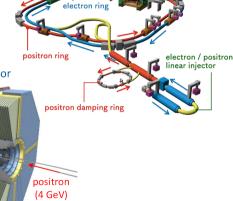
Belle II detector

- Located at the SuperKEKB collider in Tsukuba/Japan
- Asymmetric $e^+ e^-$ collisions at $\sqrt{s} = M_{\Upsilon(4S)} = 10.58\,{
 m GeV}$

electron (7 GeV)

30 ଢ

20


10 0

2034

- Luminosity-frontier experiment, exploring new physics
- Target: $\mathcal{L}_{int} = 50 \text{ ab}^{-1}$, currently at 0.43 ab⁻¹
- Right now: long shutdown, restart early 2024
- \mathcal{L}_{inst} will be increased stepwise
- Challenging hitrates expected

l neak(Taros

Interaction

Region

2024

2029

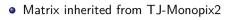
OBELIX for the Belle II Experiment



The VTX Upgrade Concept

- Scheduled for 2027/2028
- 5 straight layers with DMAPS in ladder/stave design
- Identical chips on all layers: Optimized BELIe II pIXel sensor
- Different features enabled on different ladders
- L1 & L2 (iVTX):
 - All silicon ladders
 - Air cooling (constrains power)
- L3 to L5 (oVTX):
 - Carbon fiber support frame
 - Cold plate with water cooling

				0		
	L1	L2	L3	L4	L5	Unit
Radius	14.1	22.1	39.1	89.5	140.0	mm
# Ladders	6	10	8	18	26	
# Sensors	4	4	8	16	24	per ladder
Expected hitrate	18.0	6.7	1.7	0.45	0.22	MHz/cm^2
Material budget	0.1	0.1	0.3	0.5	0.8	% X ₀



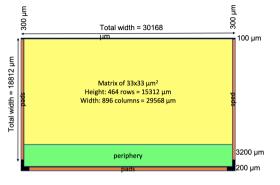
OBELIX Key Requirements

- High hit efficiency at demanding hitrates and radiation levels

- 2. Handling trigger latency of the Belle II experiment
- 3. Power dissipation allowing air cooling of inner layers and water cooling of outer layers
- 4. Low space for cables inside detector

5. Fast but coarse hit information as input for Belle II trigger

- Evaluation still ongoing
- New implementation of digital periphery
- Simulation to validate performance
- Optimized digital logic
- 1 or 2 LVDS link(s) per chip (Tx)
- 2 LVDS links for groups of chips (Clk, CMD)
- On chip voltage regulators
- Independent data path
- Low granularity/low latency transmission

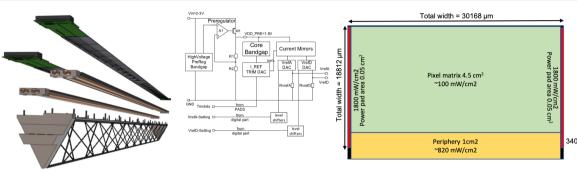

OBELIX for the Belle II Experiment

The OBELIX chip

- Fast clock of TJ-Monopix2 is 160 MHz
- OBELIX clock 1/3 Belle II RF (509 MHz)
- Often round numbers stated

- Matrix from TJ-Monopix2, only size adjusted
- 464 rows and 896 columns
- Timestamp resolution: $\sim 50\,\text{ns}$
- Up to 10 µs trigger latency
- Power: < 1.5 W per chip
- TID tolerance: 100 kGy/year
- $\bullet~$ NIEL tolerance: $5\times10^{13}\,n_{eq}/cm^2/year$
- Hitrates up to 120 MHz/cm² (continuous):
 - Safety factor of 5
 - Hitrate spikes due to injection expected

Clock signal	Rounded	Real value	Period
Fast clock	160 MHz	169.7 MHz	5.89 ns
Slow clock	20 MHz	21.2 MHz	47.1 ns
TXU clock	32 MHz	33.9 MHz	29.5 ns



USTRIAL

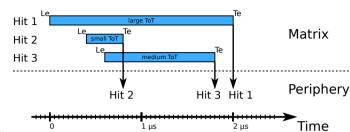
ADEMY O

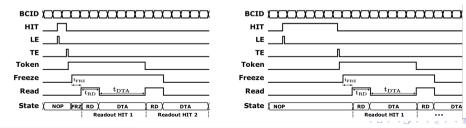
OBELIX Power Management

- Long linear ladders: voltage drop across ladder
- Narrow LDOs on both sides of the chip
- Input voltage 2 to 3 V
- LDOs cause some dead area, but TJ-Monopix2 matrix requires power from the sides
- Aspect ratio of regulators as high as possible to keep dead area small

AUSTRIAN

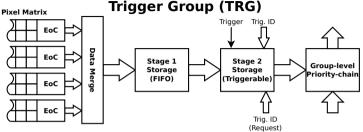
CADEMY OF


CIENCES


Matrix Readout

TJ-Monopix2 Readout Scheme:

- Also used in OBELIX
- Charge information over ToT measurement (up to 2 µs, tunable)
- Hit is released to periphery after trailing edge
- Leads to time disorder of received hits


• Max ToT defines how late data may come in datastream

OBELIX Trigger Group

ÖAW

Sophisticated 2-Stage trigger logic:

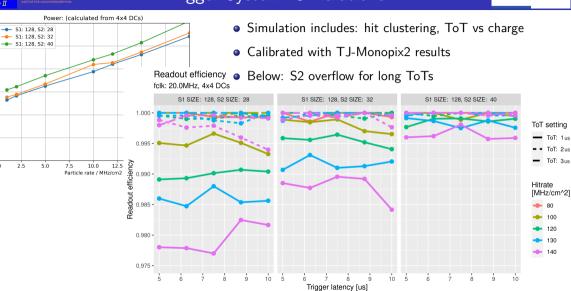
- Trigger memory organized in 112 Tigger Groups (TRGs), each connected to 4 DCs
- Stage 1 (128 hits): Pre-trigger buffer SRAM, low power dissipation
- Stage 2 (32 hits): Associative memory to match trigger with hitdata, power hungy
- Time-disorder (2 $\mu s)$ less than latency (10 $\mu s):$ S2 can be smaller than S1
- Buffer sizing driven by power dissipation and hitrate, evaluated with extensive simulations

120 -

100

80

60


40

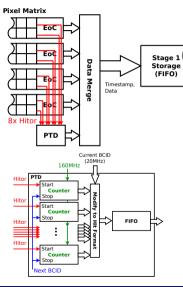
20

0.0

TRU Power / mW

Trigger System: Simulations

Maximilian Babeluk

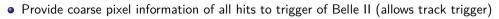

Apr 25th 2023 9 / 23

AUSTRIAN

ACADEMY OF

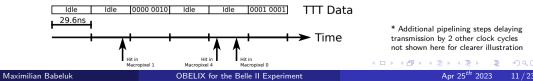
SCIENCES

- HitOR: all comparator outputs of one column in an OR-chain (asynchronous)
- PTD: precision timing better than BCID (20 MHz)
- 160 MHz clock frequency
- Power hungry feature: disabled in iVTX
- PTD data stored in (fake-)hit data with nonexistent row addresses
- No extra storage needed for PTD, re-use of large trigger memory needed for higher hitrates
- Little overhead in terms of area/space when disbaled
- Resolution limited by timewalk and PVT of HitOR delay


AUSTRIAN

ADEMY O

AUSTRIAN

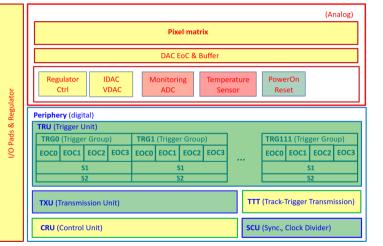

ADEMY O

- Allows a Belle II trigger based on track information (track trigger)
- Low transmission latency is wanted (leaves more time for trigger algorithm)

Solution: Track Trigger Transmission (TTT)

- Separate transmission logic independent from normal OBELIX readout system (extra LVDS link))
- Power constrains this to the oVTX (outer 3 water cooled layers)
- 2 to 8 logical macropixels per whole chip (configurable)
- 160 MHz DDR transmission (320 Mb/s, 8b/10b encoded)
- No framing, no sync necessary, bit is set when HitOR of macropixel rises

- The OBELIX chip is based on the analog part of TJ-Monopix2
- The digital periphery will have several additional features
- Versatile chip for large dynamic range of hitrates
- Still under development, but significent progress recently
- Feature completeness planned for July 2023
- Verification ongoing


Backup slides

Maximilian Babeluk

OBELIX for the Belle II Experiment

Apr 25th 2023 13 / 23

OBELIX Block Diagram

- On chip LDOs (1.8V)
- On chip trigger logic (TRU)
- Fast triggerless output for Belle II Track Trigger (TTT)

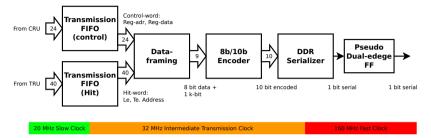
AUSTRIAN

ACADEMY OF

 $\Box \Delta$

- Precision timing counter improve timing for outer layers
- On chip ADC for temperature measurement and calibration

НЕРНҮ


Relle 1

OBELIX for the Belle II Experiment

Transmission Unit (TXU)

- Most TXU components run at 32 MHz (160 MHz/5) intermediate clock
- Serializer needs one byte (10 bit encoded, DDR) per 32 MHz clock cycle
- This allows simple state machines
- Clock boundary to 20 MHz clock is done via FIFO
- Hits are sent in frames sharing the same leading edge BCID

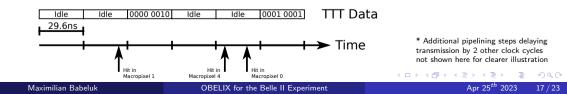
Goal:

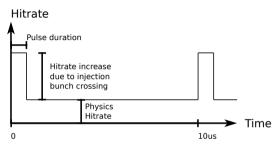
- Provide coarse pixel information of all hits to trigger of Belle II
- Allows a Belle II trigger based on track information (track trigger)
- Power constrains this to the oVTX (outer 3 water cooled layers)
- Low transmission latency is wanted (leaves more time for trigger algorithm)

Solution: Track Trigger Transmission (TTT)

- Independent from normal OBELIX readout system
- Separate transmission logic (and extra LVDS link)
- 2, 4 or 8 logical macropixels per whole chip (configurable)
- Whole columns grouped via HitOR (56 to 224 DCs create one macropixel)

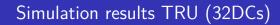
OBELIX LVDS Connections




AUSTRIAN

CADEMY O

- $\bullet\,$ Continous data stream is sent out, 8b/10b encoded
- Bit corresponding to macropixel is set once when rising edge on HitOR
- No data frames, each byte sent stands for its own and defines timing
- No sync needed
- 160 MHz DDR transmission (320 Mb/s)
- Resolution from clock: 29.6 ns (boxlike, $\sigma = 8.5$ ns)
- Uncertainty from HitOR: 35 ns (boxlike, $\sigma = 10.1$ ns)
- Total time resolution: $\sigma \sim 13\,\mathrm{ns}$

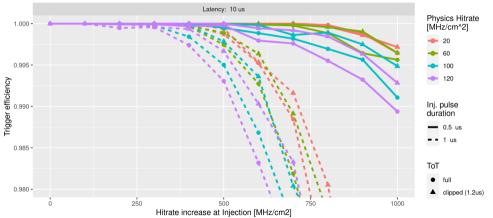


- Hitrate is time modulated
- To the physics hitrate, an increased pulse is added
- Trigger is NOT vetoed some triggers will happen during injection bunch
- Two different pulse durations tested: $0.5 \,\mu s$ (expected) and $1 \,\mu s$ (much more demanding)

AUSTRIAN

CADEMY O

SCIENCES

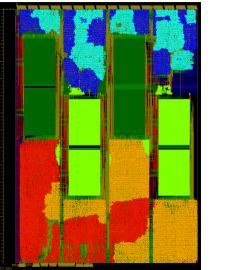


Trigger efficiency fclk: 20.0MHz, 32x4 DCs

НЕРНҮ

Relle T

イロト イヨト イヨト イヨ

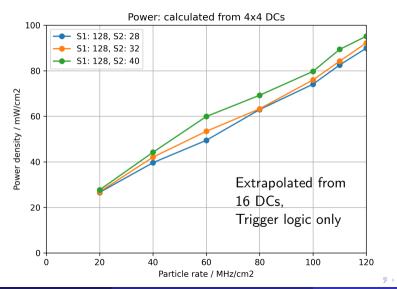


- Short pulses of high hitrate do not degrade performance
- Longer spikes create performance degradation
- For 0.5 $\mu s,$ up to 800 MHz/cm² of BG have low impact (20 MHz/cm² physics)
- An additional veto mechanism is probably not necessary
- Trigger probability was constant over time (no veto)
- We might have triggers inside the veto in the future

ADEMY O

Floorplan (4x4 Version)

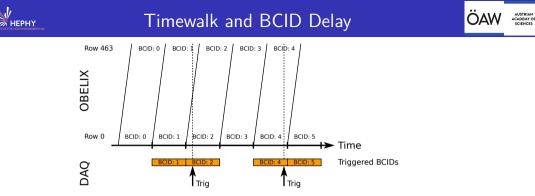
Apr 25th 2023 21 / 23


◆□ → ◆問 → ◆ □ → ◆ □ → □ □

ÖAV

AUSTRIAN ACADEMY OF SCIENCES

Power simulation


Maximilian Babeluk

OBELIX for the Belle II Experiment

AUSTRIAN

SCIENCES

OΔ

- The plan is: no further precautions for the chipdesign
- OBELIX can handle triggers on multiple subsequent BCIDs
- The DAQ system automaically can create e.g two triggers for BCID, BCID+1 for the same event
- Easily reconfigurable if e.g. three BCID frames are necessary
- At 30 kHz trigger rate, link speed is not limiting