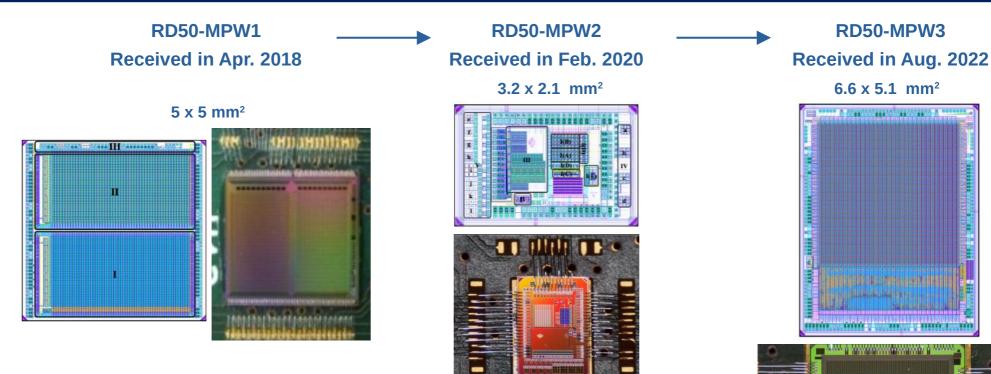
Development and evaluation of the RD50-MPW chips in the LFoundry 150 nm HV-CMOS process

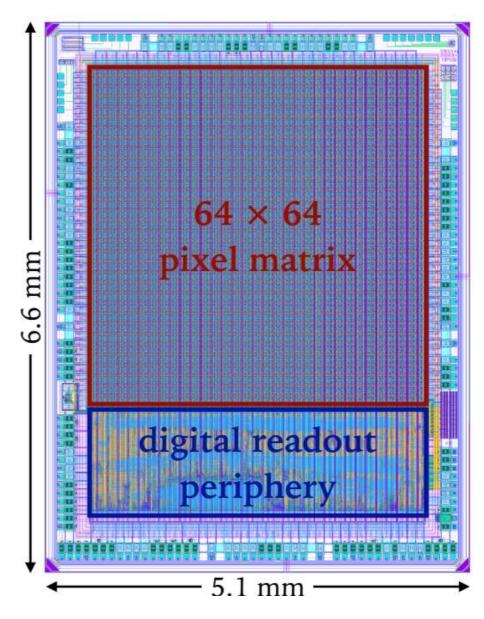
Ricardo Marco Hernández IFIC (CSIC-UV), on behalf of the CERN RD50 CMOS collaboration.

AIDAinnova 2nd Annual Meeting


CERN RD50 depleted CMOS activities

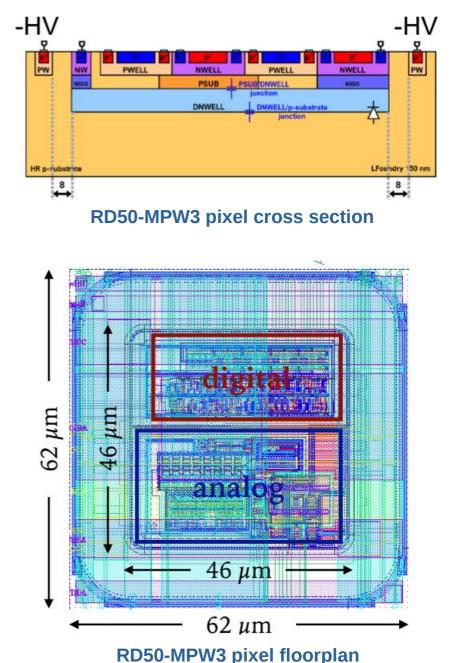
• CERN RD50 collaboration.

- International collaboration with more than 400 members.
- Aimed at developing and characterising radiation-hard semiconductor devices for high luminosity colliders.
- R&D carried out in new structures (3D, LGAD, Depleted CMOS, etc.).
- **Depleted CMOS sensors** have a huge potential for future experiments in physics: **high priority in RD50.**
- **RD50 has working group** to develop and study these sensors.
- CERN-RD50 CMOS working group make efforts in:
 - TCAD simulations;
 - ASIC design;
 - DAQ development;
 - Chip performance evaluation.
- Currently involves 17 institutes.
- A series of HV-CMOS prototypes have been developed using LFoundry 150 nm HV-CMOS process with large collection electrode.


RD50 HV-CMOS prototypes

- **RD50-MPW1:** test the LF150 process.
 - Low V_{BD} (55 V) and high I_{Leak} (~ μA).
 - Crosstalk in some digital readout lines from pixels.
- **RD50-MPW2**: focus on the pixel and analog readout design.
 - Small pixel matrix (8 x 8) without in-pixel digital readout and no digital readout periphery.
 - High V_{BD} (130 V), low I_{Leak} (~ nA) and fast analog front-end.
- **RD50-MPW3**: increase size and include digital readout.
 - Larger pixel matrix (64 x 64) with in-pixel digital readout and advanced peripheral readout.

- RD50-MPW3 design based on lessons learnt from previous chips.
 - Same chip ring structure for high $V_{\mbox{\tiny BD}}$ and low $I_{\mbox{\tiny Leak}}.$
 - Fast analog front-end.
- Mainly composed of a **pixel matrix**, a **digital readout periphery** and **test structures**.
- Wafers with **different resistivity** (1.9 k Ω ·cm, 3 k Ω ·cm and 10 Ω ·cm).
- Several new features in RD50-MPW3.
 - Double-column architecture.
 - FE-I3 style digital readout circuits.
 - Optimised digital periphery for effective chip configuration and fast data transmission.
- **RD50-MPW3** was submitted for fabrication in Dec. 2021 and received in Aug. 2022.

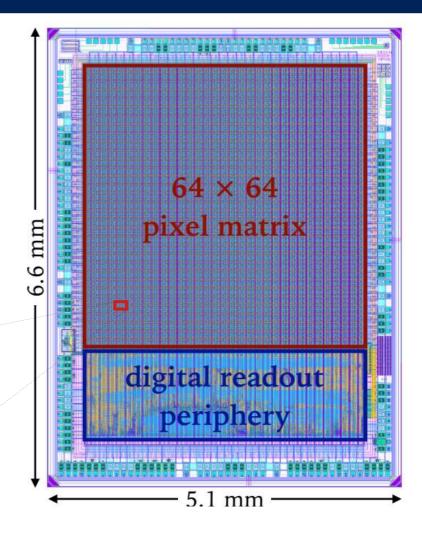

RD50-MPW3 floorplan

RD50-MPW3 pixel

- Large collection electrode pixel.
- High voltage applied from top side.
- Analog and digital electronics included inside each pixel (55% pixel area).
- Analog and digital circuits placed into separate deep pwells and have different power lines to minimise crosstalk noise.
- Analog front-end from RD50-MPW2 (CSA + comparator).
- Digital readout with double column drain readout and rolling shutter.
- **Time of arrival** and **time over threshold** are recorded (8-bit time stamps) + **pixel address** (8-bit).

Pixel size	62 μm × 62 μm ~ 250 fF	
Cd		
Power	$22 \mu\text{W/pixel}$ (VDD = 1.8 V)	
Gain	230 mV (for 5 ke-)	
ToT	55 ns (for 5 ke-)	
ENC	120 e-	
Time walk	9 ns	

RD50-MPW3 pixel parameters from simulation

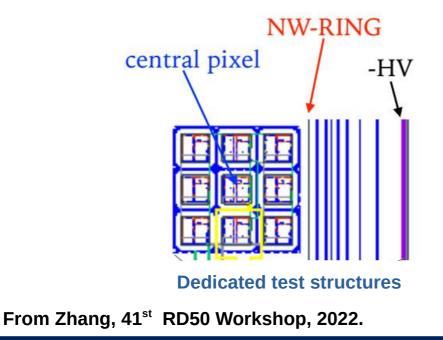


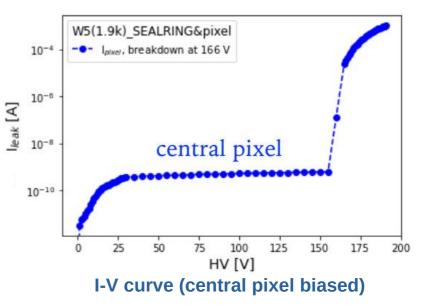
AIDAinnova 2nd Annual Meeting

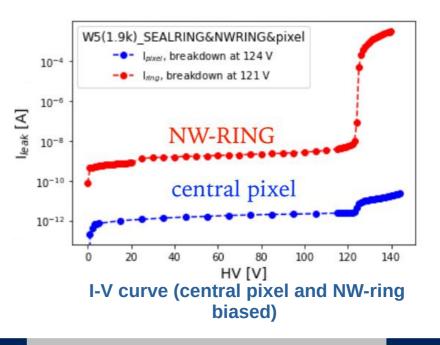
RD50-MPW3 pixel matrix

- 64 columns organised into 32 double columns.
- Digital signal lines placed in the middle of each column.
- Analog lines placed between double columns.
- Shielding lines (grounded) inserted between digital lines to minimise coupling.
- Power grid used to minimise IR voltage drop.

25th April 2023

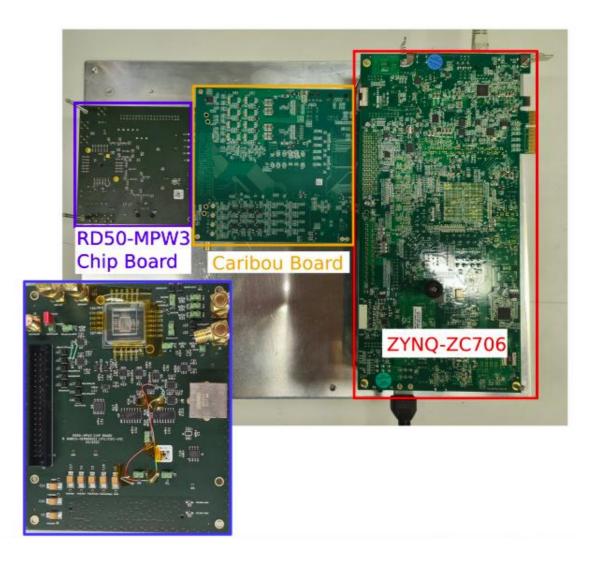

RD50-MPW3 readout periphery


- One End-Of-Column (EOC) per double coulmn (DCOL).
 - Configuration of pixels.
 - Pixel data readout + 32 word deep buffer.
- Transmission unit (TX unit) for data transmission.
 - 128 words deep buffer (FIFO).
 - Framing and encoding (Aurora 8b-10b).
 - Serialisation at 640 MHz.
- Control unit (CU) for reading out EOC buffers.
 - Controls data propagation from EOCs to TX Unit.
- Global timestamp (TS) generator.
 - 8-bit, running at 40 MHz.
 - Gray-encoded to minimise activity on bus.
- Clock and reset generator.
 - Dividing 640 MHz clock into a 40 MHz clock.
 - Clock multiplexer for optional external 40 MHz clock.
 - External reset synchronisation with clock.
- I2C to Wishbone module.
 - Converts external I2C signals to internal wishbone control signals.



RD50-MPW3 initial IV measurements

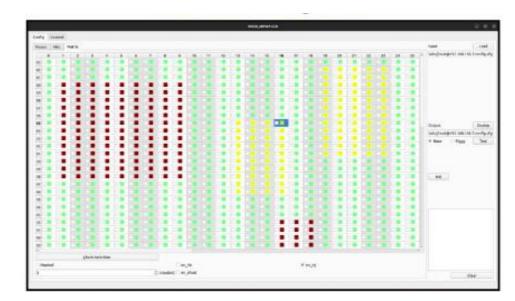
- Dedicated test structures to measure leakage currents of central pixel and ring.
- Only central pixel biased: leakage current ~ nA and breakdown voltage ~ 160 V.
- NW-Ring also biased:
 - Most leakage current collected by the NW-Ring.
 - NW-Ring leakage current ~ nA and breakdown voltage ~ 120 V.
 - Pixel leakage current ~ pA and breakdown voltage > 120
 V.



DAQ system for RD50-MPW3

- Based on Caribou DAQ system.
- Xilinx Zynq-ZC706 board with Yocto based linux.
- CaR board.
- Custom chip board.
 - Allows chaining of second chip board for test beam.
 - SMA connectors to probe analog outputs from RD50-MPW3.

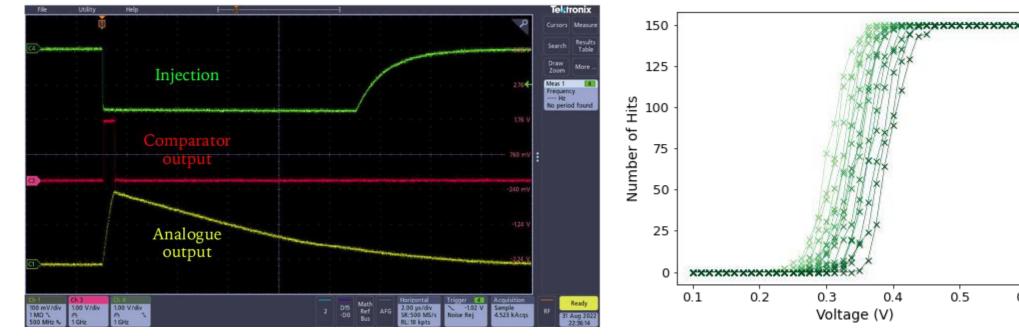
DAQ software for RD50-MPW3


- Caribou firmware customised for RD50-MPW3.
- Software based on Peary from Caribou. Custom GUI.
- Control tab.
 - DAQ configuration.
 - Chip configuration.
 - Execute commands to run the chip.
- Matrix configuration tab.
 - Select pixels for configuration.
- Power tab.
 - Set bias and supply voltages.

Power #	visc	Metrix		
pow	tán.	U[V]	Lmax [A]	
1 bl		0.9	3	
2 p1v3_vs	ia	1.3	3	
3 p1v8_ne	ring	1.0	1	
4 p1v8_vd	dt	1.0	3	
5 p1v8_vd	da	1.0	1	
6 p1v8_vd	dc	1.8	3	
7 p1v0_vu	ensbus	1.0	3	
8 p2v5d		2.5	3	
s th		1.2	3	

Power tab

Control tab



Matrix configuration tab

AIDAinnova 2nd Annual Meeting

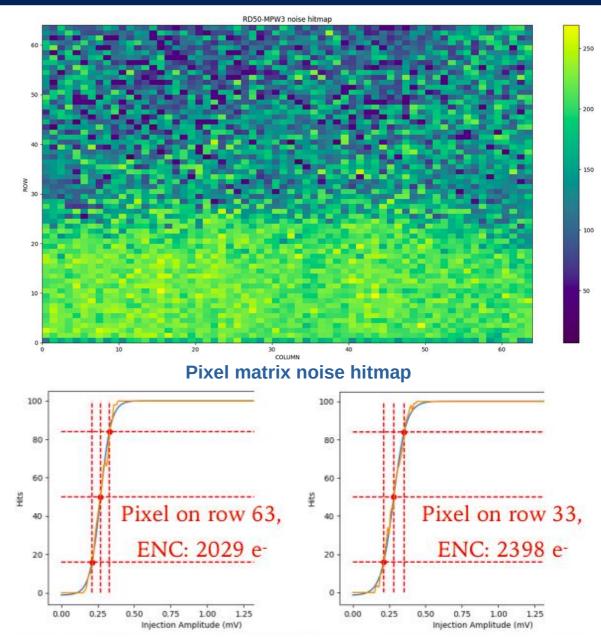
RD50-MPW3 first response

- Send injection signal into pixels.
- Chip, DAQ and GUI are functioning.
- S-curve for different pixels as expected.

Pixel amplifier and comparator output signals when a pulse is injected to the pixel.

From Zhang, 41st RD50 Workshop, 2022.

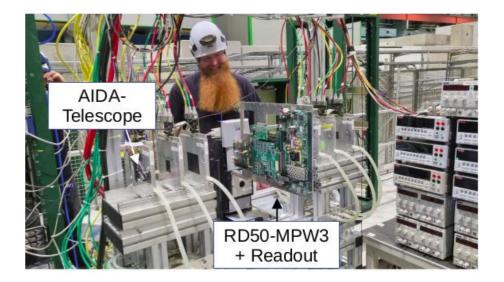
S-curve for one pixel (150 hits per point). Threshold varied with trimdac (darker curve corresponds to higher threshold).

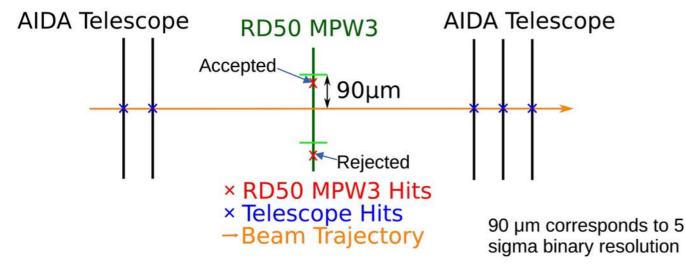

From Sieberer, Zhang, TWEPP, 2022.

0.6

RD50-MPW3 noise hitmap

- No injected signal (only noise).
- Chip default configuration.
- Threshold 300 mV above baseline (900 mV).
- Shutter window of 2s.
- Bottom part of the matrix is noisier.
 - Confirmed by S-curves of pixels corresponding to different rows.
- Noise coupling from digital periphery.
 - Digital ground shared by digital periphery and digital part of pixels.
 - Simulation confirms that noise is minimised by separating digital periphery and digital pixel grounds.

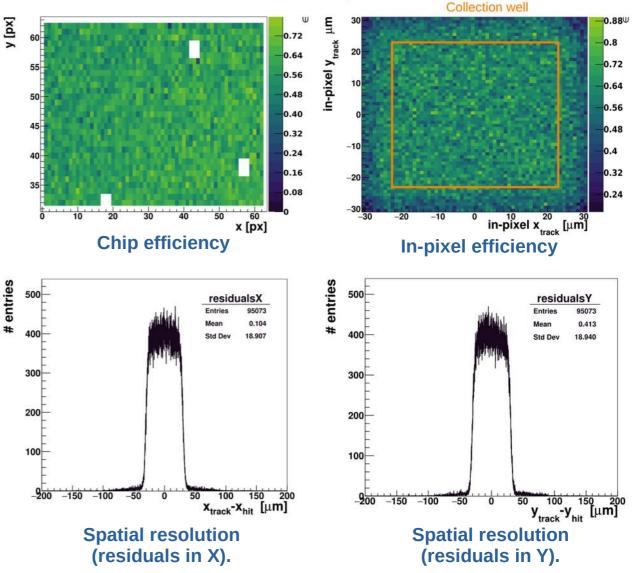



S-curves for pixels on row 63 and 33 for the same column.

From Zhang, 41st RD50 Workshop, 2022.

RD50-MPW3 CERN SPS test beam

- SPS test beam week in October 2022.
- Placed within **SPS proton beam line** (H6B-PPE 156, 120 GeV beam).
- EUDET-type telescope with 5 MIMOSA26-planes used.
- Synchronised data taking via AIDA TLU using EUDAQ2.
- Analysis using Corryvreckan.


- Spatial matching.
 - AIDA telescope provides reference tracks.
 - Only accepted hits matched to tracks are shown.
 - Interpolated track position used for in-pixel measurements.

From Kraemer, TREDI 2023.

RD50-MPW3 CERN SPS test beam

- Chip and in pixel efficiency.
 - Efficiency based on ratio of matched to total tracks.
 - Average efficiency of active sensor of 60%.
 - Efficiency reduced by high threshold set (1/3 MIP MPV for 190 µm depletion depth).
- Spatial resolution.
 - Residual between interpolated track position and measured pixel hit location.
 - Almost binary distribution due to low double hit clusters.

$$\sigma_{\rm meas} = 18 \mu {\rm m} \approx \frac{62 \mu {\rm m}}{\sqrt{12}} = \sigma_{\rm binary}$$

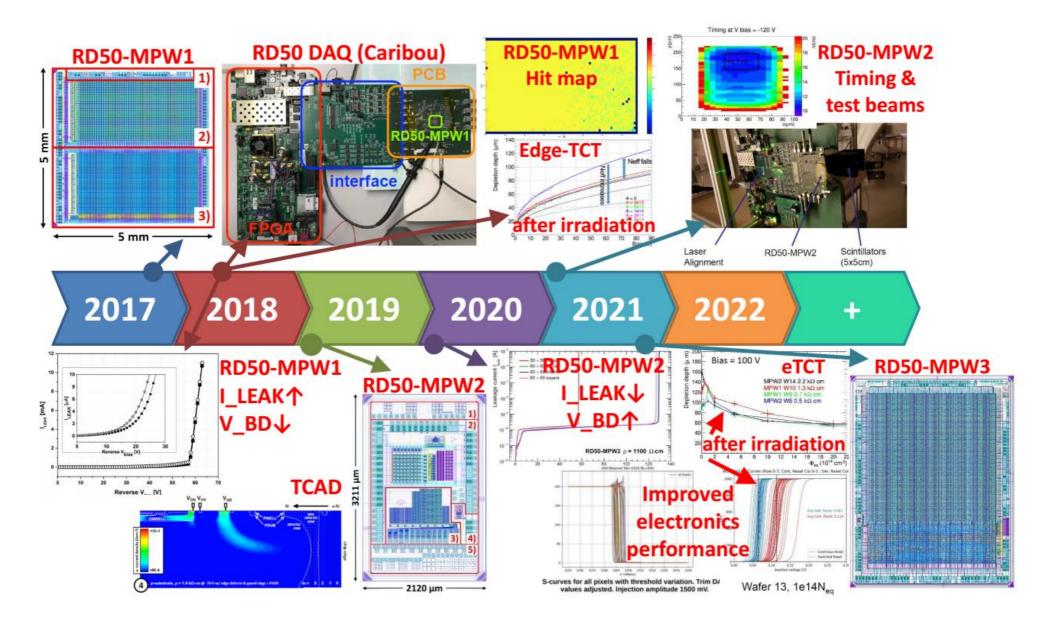
From Kraemer, TREDI 2023.

- New RD50-MPW4 chip submission planned for May 2023.
- Fix issues observed in RD50-MPW3.
 - Interface between matrix and periphery: longer pull-down time to run time-stamp without discharging effects.
 - Easy generation of global time-stamp: 64-bit counter in the chip.
 - High noise in lower half of matrix: separate digital pixel matrix and digital periphery power/ground domains.
- Improve breakdown voltage and radiation tolerance.
 - Optimised multi-ring guard structure around chip: as in current test structures.
 - Better HV distribution to pixels: backside biasing (backside processing).
- Same pixel matrix size and similar chip size (5.4 mm x 6.4 mm).
- Three wafers with substrate resitivity of 3 k Ω ·cm (also standard resistivity of 10 Ω ·cm).

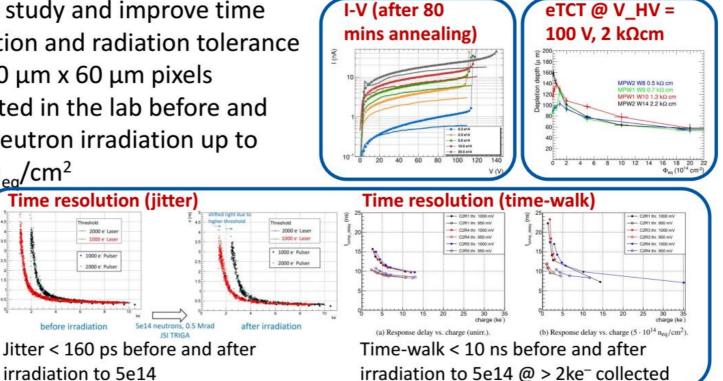
- Summary.
 - RD50 CMOS activities on monolithic CMOS devices for very high luminosity colliders progressing at good pace.
 - Three RD50 HV-CMOS prototypes developed so far.
 - RD50-MPW3 operation tested successfully for non-irradiated devices.
 - Test beam with RD50-MPW3 carried out at CERN SPS showed promising results.
 - Several RD50-MPW3 issues identified and well understood.
- Outlook.
 - New RD50-MPW4 submission in May 2023.
 - Continue RD50-MPW3 characterisation with non-irradiated and irradiated devices.
 - New RD50-MPW3 test beam campaign at DESY in July 2023.

Development and evaluation of the RD50-MPW chips in the LFoundry 150 nm HV-CMOS process

Ricardo Marco Hernández IFIC (CSIC-UV), on behalf of the CERN RD50 CMOS collaboration.

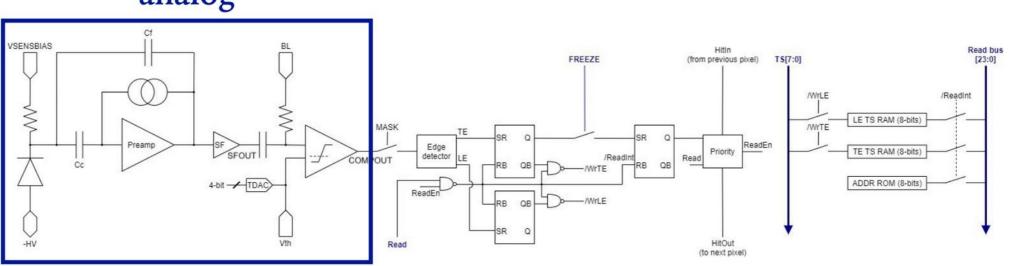


AIDAinnova 2nd Annual Meeting


Backup slides

RD50 CMOS timeline

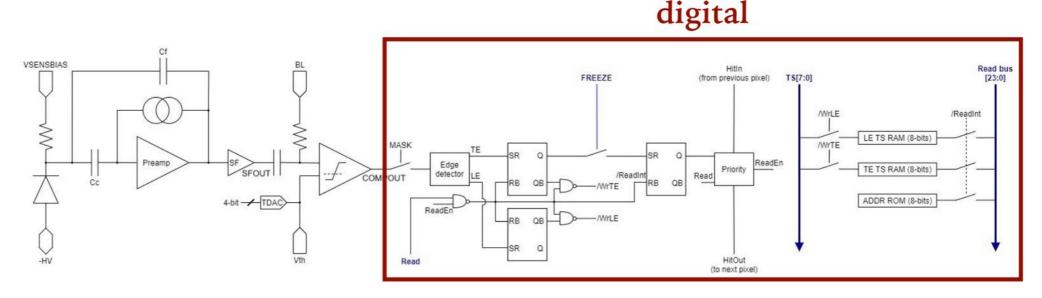
From Vilella, 1st AIDAinnova meeting, 2022.


- Prototype HV-CMOS sensor with test structures and a small active pixel matrix, fabricated in high resistivity substrates in a Multi-Project Wafer submission with LFoundry.
 - Aim to study and improve time resolution and radiation tolerance with 60 μ m x 60 μ m pixels
 - Evaluated in the lab before and after neutron irradiation up to $2e15 n_{eq}/cm^2$

From Vilella, 41st RD50 Workshop 2023.

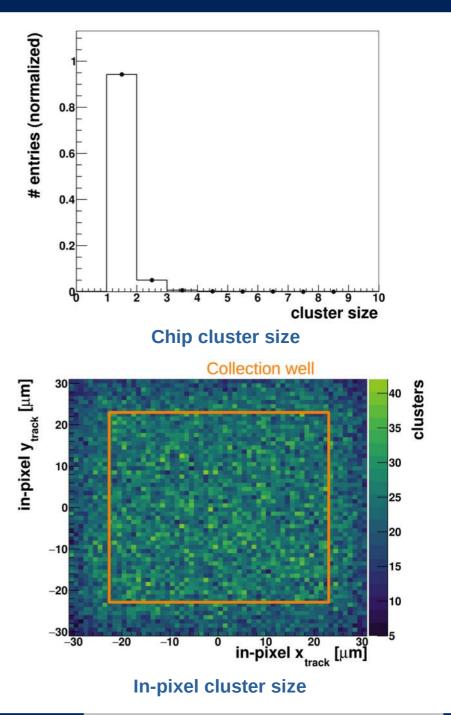
RD50-MPW3 pixel: analog front-end

- Analog front-end from RD50-MPW2 pixels: tested design with good performance.
 - · Continuous-reset charge sensitive amplifier with high processing speed.
 - Each pixel has a comparator to digitise its analog signal.
 - A 4-bit trim-DAC inside each pixel tunes comparator threshold.
 - Injection circuit included to characterise pixel performance.
 - Analog pixel outputs routed to external pads (SFOUT and COMPOUT).



analog

From Zhang, 40th RD50 Workshop, 2022.


RD50-MPW3 pixel: digital front-end

- Digitial readout based on coulmn drain architecture from RD50-MPW1 (highly improved).
 - 8-bit time stamp (40 MHz) sent to all pixels.
 - Time stamps of the rising and trailing edges of the comparator output recorded to measure Time of Arrival (ToA) and Time over Threshold (ToT).
 - Time stamps stored in two 8-bit RAMs, which are sent out together with an 8-bit pixel address via a shared readout bus.
 - Full custom design to minimise area.

From Zhang, 40th RD50 Workshop, 2022.

RD50-MPW3 CERN SPS test beam

- Cluster size distribution.
 - Majority of 1-hit clusters (94%).
 - Homogeneous distribution of 1-hit clusters within pixel.
 - Reduction towards the edges due to charge sharing.

From Kraemer, TREDI 2023.