
Thin Silicon Sensors
for Extreme Fluences

eXFlu-innova
V. Sola, Torino University and INFN – Torino Unit
F. Moscatelli, CNR–IOM and INFN – Perugia Unit
G. Paternoster, FBK – SD

AIDAinnova 2nd Annual Meeting
24–27 April 2023
Valencia, Spain



The Team

V. Sola et al. eXFlu-innova @ AIDAinnova 2nd Annual Meeting 2

R. Arcidiacono, N. Car.glia, M. Costa, M. Ferrero, S. Galle8o, S. Giordanengo,
L. Lanteri, L. Menzio, R. Mulargia, N. Pastrone, F. Siviero, VS
INFN Torino, Università degli Studi di Torino, Università del Piemonte Orientale

P. Asenov, T. Croci, A. Fondacci, A. Morozzi, D. Passeri, FM
INFN Perugia , Università degli Studi di Perugia, CNR-IOM

M. Boscardin, M. Cen.s Vignali, F. Ficorella, O. Hammad Alì, GP
G. Borghi*
Fondazione Bruno Kessler, TIFPA
* now at Politecnico di Milano



A new Sensor Design

V. Sola et al. eXFlu-innova @ AIDAinnova 2nd Annual Meeting

Goal: Design planar silicon sensors able to work in the fluence range 1016 – 1017 neq/cm2

Difficult to operate silicon sensors above 1016 neq/cm2 due to:
– defects in the silicon la;ce structure   → increase of the dark current
– trapping of the charge carriers               → decrease of the charge collec>on efficiency
– change in the bulk effec>ve doping      → impossible to fully deplete the sensors

The ingredients to overcome the present limits above 1016 neq/cm2 are:
1.  satura<on of the radia>on damage effects above 5·1015 neq/cm2

2.  the use of thin ac>ve substrates (15 – 45 µm) with internal gain
3.  extension of the charge carrier mul>plica>on up to 1017 neq/cm2 → Compensated LGADs
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Project Activities
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The activities of the proposal concentrate on the realisation of the most innovative part of our design, 
the compensated gain layer
▻ Two sensor productions will be performed, one to manufacture the first compensated LGADs and

one to study the donor removal 
▻ The production process flows will be simulated, to optimise the procedures and sequences of 

implantation and activation of dopants
▻ Both productions will be tested before and after irradiation to measure the initial donor removal

and the performances of compensated LGADs
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Project Flow
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Deliverables:
1. simula'on and design of the p–n compensated gain implant (M6)
2. produc'on of p–n compensated sensors and n-doped sensors (M12 & M24)
3. iden'fica'ons of the best parameters to manufacture compensated LGADs (M36)

Irradiation
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Project Flow
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Deliverables:
1. simulation and design of the p–n compensated gain implant (M6) – DONE 
2. production of p–n compensated sensors (M12) – DONE and n-doped sensors (M24) –
3. identifications of the best parameters to manufacture compensated LGADs (M36) – pending
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Sensors for Extreme Fluences – Recap
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Compensation at a Glance
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Impossible to reach the design target with the
present design of the gain layer

Use the interplay between acceptor and
donor removal to keep a constant gain layer
active doping density

Many unknown:
▻ donor removal coefficient, from n+(F) = n+(0)⋅e-cDF

▻ interplay between donor and acceptor
removal (cD vs cA)

▻ effects of substrate impurities on the
removal coefficients
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The EXFLU1 ProducGon Batch at a Glance
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A batch of thin LGAD for extreme fluences was released by the FBK foundry  
⇒ EXFLU1

The EXFLU1 batch from FBK explores different innovation strategies to extend the
radiation tolerance of silicon sensors up to the extreme fluences:
▻ carbon shield (in Backup)
▻ compensation
▻ new guard ring design
▻ thin substrates (15–45 µm)

→ The EXFLU1 wafers exited the FBK clean room in November 2022
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The EXFLU1 Wafers
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6” Wafer

⇒ The EXFLU1 testing has started
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Compensated LGAD – Split Table
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3 different combinations of p+ – n+ doping: 2 – 1, 3 – 2, 5 – 4 

  Wafer #  Thickness   p+ dose  n+ dose C dose
6 30 2 a 1
7 30 2 b 1
8 30 2 b 1
9 30 2 c 1

10 30 3 a 2
11 30 3 b 2
12 30 3 b 2
13 30 3 b 2 1.0
14 30 3 c 2
15 30 5 a 4

[ a < b < c ]
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Compensated LGAD – I-V for different p+ – n+
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Compensated LGAD – I-V for different p+ – n+
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Compensated LGAD – I-V for different p+ – n+
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Simulation
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Compensated LGAD – I-V for different p+ – n+
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Simulation
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Compensated LGAD – Testing Campaign
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Observations from compensated LGAD sensors:
▻ the depletion of the gain layer region with bias reflects the depletion of different p-n junctions
▻ 2–1 sensors exhibit a too-high gain to be operated
▻ 3–2 sensors exhibit sharp gain performance compared to standard LGAD
▻ 5–4 sensors exhibit smaller gain with respect to standard LGAD
→ A correct tuning of the p+–n+ doping densities need to be extrapolated by the EXFLU1 sensors

Investigation of the gain implant doping evolution:
▻ SIMS on the compensated LGAD are ongoing to precisely map the p+ and n+ implants
▻ The shape and doping density of the gain implant to be investigated before and after irradiation

through I-V and C-V measurements
▻ The concurrent effect of acceptor and donor removals will be investigated
▻ TCT measurements with different laser wavelengths before and after irradiation will be used to 

study the signal shape evolution at different sensor depths
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Compensated LGAD – Signals from TCT
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TCT Setup from Particulars 
Pico-second IR laser at 1064 nm
Laser spot diameter ~ 10 µm
Cividec Broadband Amplifier (40dB)
Oscilloscope LeCroy 640Zi
Room temperature

Signal analysis from an LGAD and a PIN of W15 (5–4) 
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Compensated LGAD – Waveforms from TCT
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TCT Setup from Particulars 
Pico-second IR laser at 1064 nm
Laser spot diameter ~ 10 µm
Cividec Broadband Amplifier (40dB)
Oscilloscope LeCroy 640Zi
Room temperature

Waveforms from an LGAD and a PIN of W15 (5–4) operated at Vbias = 150 V 
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Compensated LGAD – 2D Scan with IR Laser
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Scan surface

Tenta.ve sketch of a 
compensated LGAD
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Ongoing characterisation: investigate with IR laser the edge of the compensated gain implants
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Compensated LGAD – 2D Scan with IR Laser
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Scan surface

Tenta.ve sketch of a 
compensated LGAD

⚠ NOT TO SCALE ⚠

Ongoing characterisa.on: inves.gate with IR laser the edge of the compensated gain implants

→ No issues observed at the edge of the compensated gain implants
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Compensated LGAD produced by HPK
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Presented by K. Hara at TREDI2023 [link]

https://indico.cern.ch/event/1223972/contributions/5262001/


Compensated LGAD from HPK – cA vs cD ?
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What can we learn from HPK compensated LGAD?
cA and (presumably) cD depends on the effective acceptor and donor densities
At fluences of 6E14 & 3E15 neq/cm2 → p+ – n+ compensated doping is the same as before irradiation
⇒ cA > cD?
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Compensated LGAD from HPK – cA vs cD ?
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What can we learn from HPK compensated LGAD?
cA and (presumably) cD depends on the effective acceptor and donor densities
At fluences of 6E14 & 3E15 neq/cm2 → p+ – n+ compensated doping is the same as before irradiation
⇒ cA > cD?
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p-in-n LGAD ProducGon
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A producWon batch is needed to study the donor removal coefficient, cD
Donor removal has been studied for doping densi.es of 1012 – 1014 atoms/cm3

We need to study donor removal in a range 1016 – 1018 atoms/cm3

NB: Oxygen has for donor removal a very similar effect of Carbon to acceptor removal

→ The main goal of the p-in-n LGAD producNon is to study the cD evoluNon
and its interplay with Oxygen co-implantaNon

First p-in-n LGAD (NLGAD) batch produced by CNM [link]

p-in-n LGAD

p++

n+

n

n++
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Process simula.on is used to design the p++ electrode with Boron (TCAD Silvaco)

p-in-n LGAD – Simulation & Design
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Process simulation is used to design the p++ electrode with Boron (TCAD Silvaco)

→ The simulation of the electrostatic behaviour shows good performances of the I-V characteristics
for different p++ designs (TCAD Synopsys)

p-in-n LGAD – SimulaGon & Design
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Different designs of the n+ gain layer are inves.gated

p-in-n LGAD – SimulaGon & Design
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Different designs of the n+ gain layer are investigated

→ Both electrical and transient characteristics exhibit good operation of the sensors

p-in-n LGAD – Simulation & Design
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Different designs of the guard ring structures are investigated

p-in-n LGAD – SimulaGon & Design
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Participation to an RD50 Project
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Defect engineering in PAD diodes mimicking the gain layer in LGADs 
PI: Ioana Pin[lie (Bucharest, Nat. Inst. Mat. Sci.)
Pa[cipants: Michael Moll (CERN), Kevin Lauer (CiS), Gregor Kramberger (JSI), 

Eckhart Fretwurst (Hamburg University), Valen[na Sola (INFN-Torino), 
and Tomas Ceponis (Vilnius University)

‘The proposed project is focusing on the acceptor removal process (ARP) in the irradiated gain layer of LGAD
sensors, aiming to understand it and parametrize it for various content of B, C and O impuri[es and irradia[on
fluences, in order to find proper defect engineering solu[ons to maximize the radia[on hardness of the gain
layers.’

⇒ To study and characterise acceptor and donor removal mechanisms



Project Budget
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The project has been funded with 140k EUR + 25%
Matching funds of 140k EUR is being provided by the Participant Institutions

INFN funding
– 60k EUR for personnel, to cover 24 months of experienced Post-Docs 

→ 1 Post-Doc hired, 1 Post-Doc selection in progress
– 30k EUR of consumables, to cover the cost of dopant implantation at external services 

→ in progress

FBK funding
– 50k EUR for the 2 sensor production batches

→ 1 batch completed, 1 batch pending
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Summary on the eXFlu-innova Activities
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The eXFlu-innova activities are ongoing
▻ The p+–n+ design has been completed  – Deliverable 1
▻ The p+–n+ production batch has been completed – Part of Deliverable 2
▻ The characterisation and testing on the p+–n+ sensors have started
▻ The design of the p-in-n LGAD production is ongoing

⟹ Activities of the eXFlu-innova projects are proceeding timely
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Thank
You
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The Goals
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➣ Measure the properties of silicon sensors at fluences
above 1016 cm-2

➣ Design planar silicon sensors able to work in the fluence 
range 1016 – 1017 cm-2

➣ Estimate if such sensors generate enough charge to
be used in a detector exposed to extreme fluences

⇒ The R&D activity has started
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SaturaGon
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At fluences above 5·1015 cm-2 → Satura<on of radia<on effects observed

Silicon detectors irradiated at fluences 1016 – 1017 cm-2 do not behave as expected → They behave beEer

Leakage current saturation
I = aVF

a from linear to logarithmic

Trapping probability saturation
1/teff = bF

b from linear to logarithmic

Acceptor creation saturation
NA,eff = gcF

gc from linear to logarithmic

y = 4,23E+13ln(x) - 1,43E+15
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Thin Substrates
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g = 0.02/cm

g ~ ln(fluence)

Full depletion voltage at F = 1017 neq/cm2

At high fluences, only thin substrates 
can be fully depleted

VFD = e|Neff|d2/2e

Saturation Reduce thickness

What does it happen to a 25 µm sensor aSer a fluence of 5·1016 cm-2?
▻ It can s[ll be depleted
▻ Trapping is limited (small drii length)
▻ Dark current is low (small volume)

However: charge deposited by a MIP ~ 0.25 fC
→ This charge is lower than the minimum charge requested by the electronics 

(~ 1 fC for tracking, ≳ 5 fC for [ming)
→ Need a gain of at least ~ 5 in order to efficiently record a hit

Op.mal candidate: 
LGAD sensors
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Low-Gain Avalanche Diodes – LGADs
Minimum charge requested by the electronics 
→ ~ 1 fC for tracking
→ ≳ 5 fC for timing

Charge from a MIP crossing thin sensors
→ ~ 0.1 fC every 10 µm 
[S. Meroli et al., doi:10.1088/1748-0221/6/06/P06013]

Low-Gain Avalanche Diodes (LGADs) provide a controlled 
internal multiplication of signal 
→ Efield above Ec for short distance well controlled by Vbias

⇒ Need a gain of at least 5 – 10
to efficiently record a hit
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Low-Gain Avalanche Diodes & Irradiation

The acceptor removal mechanism deactivates the
p+-doping of the gain layer with irradiation according to

p+(F) = p+(0)⋅e-cAF

where cA is the acceptor removal coefficient
cA depends on the initial acceptor density, p+(0), and on 
the defect engineering of the gain layer atoms
[M. Ferrero et al., doi:10.1016/j.nima.2018.11.121]
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LGADs are n-in-p silicon sensors
Operated in low-gain regime (20– 30) controlled by 
the external bias
Cri.cal electric field ~ 20– 30 V/µm
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Standard LGAD – I-V at Different Thickness
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  Wafer #  Thickness   p+ dose  C dose   Diffusion  Bulk
1 45 1.04 1.0 CBL n-type
5 30 1.02 1.0 CBL high r

16 20 0.80 1.0 CHBL
17 20 0.86 1.0 CBL
18 15 0.84 1.0 CBL

low r
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Standard LGAD – I-V at Different Thickness
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  Wafer #  Thickness   p+ dose  C dose   Diffusion  Bulk
1 45 1.04 1.0 CBL n-type
5 30 1.02 1.0 CBL high r

16 20 0.80 1.0 CHBL
17 20 0.86 1.0 CBL
18 15 0.84 1.0 CBL

low r

In LGAD sensors, the 
breakdown due to gain occurs 

between 150 and 220 V
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Compensation – Simulation & Design
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Process simula.ons of Boron (p+) and Phosphorus (n+) implanta.on and ac.va.on reveal the different 
shape of the two profiles (TCAD Silvaco)

→ The simula.on of the electrosta.c behaviour show that it is possible to reach similar mul.plica.on 
for different values of ini.al compensa.on (TCAD Synopsys)

I-V from Simulation

p+ × 2, n+ × 1      
p+ × 3, n+ × 2           
p+ × 4, n+ × 3           
p+ × 5, n+ × 4           

Doping Profiles from Process Simula[on
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CompensaGon – Doping EvoluGon with Fluence
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Three scenarios of net doping evolution with fluence are possible, according to the 
acceptor and donor removal interplay :
1. cA ~ cD

p+ & n+ difference will remain constant ⇒ unchanged gain with irradiation
→ This is the best possible outcome

2. cA > cD
effective doping disappearance is slower than in the standard design
→ Co-implantation of Carbon atoms mitigates the removal of p+-doping 

3. cA < cD
n+-atoms removal is faster ⇒ increase of the gain with irradiation
→ Co-implantation of Oxygen atoms might mitigate the removal of n+-doping 
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Guard Ring Design Optimised for Thin Sensors
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16 different guard rings have been designed, op<mised for thin substrates and extreme fluences

3 different guard ring strategies:

▻ 0 GR floa.ng, varying the edge size
– different size of the ‘empty’ region
– different size of the edge region: 500, 300 & 200 µm

▻ 1 GR floa.ng, varying the GR posi.on

▻ 3 GR floa.ng with different designs

[S1 is the standard design used in previous UFSD batches]

S1

S2      S3      S4      S5

S6      S7      S8

S9

S10   S11    S12

S13

S14   S15

S16



Optimised Guard Ring Design on 45 µm
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45 µm substrates converted to n-type

→ Due to the substrate doping, the guard ring current is high and almost constant

EXFLU1 – 45 µm LGAD



OpGmised Guard Ring Design on 45 µm
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45 µm substrates converted to n-type

→ Due to the substrate doping, the guard ring current increases above 350 V
→ Current on the pad is small

EXFLU1 – 45 µm PIN



OpGmised Guard Ring Design on 30 µm
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30 µm substrates have a resistivity of ~ 900 W⋅cm

→ Most of the guard rings exhibit a breakdown at ~ 400 V (Efield ~ 14 V/µm), except S5
→ High current observed on guard rings and pads may be due to defects in the substrate

EXFLU1 – 30 µm PIN



OpGmised Guard Ring Design on 20 µm
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20 µm substrates have a resis.vity of ~ 90 W⋅cm

→ Most of the guard rings exhibit a breakdown at ~ 300 V (Efield ~ 15 V/µm), except S5
→ S5 design (zero floa.ng guard rings) reaches breakdown in the pad

EXFLU1 – 20 µm PIN



Optimised Guard Ring Design on 15 µm
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15 µm substrates have a resis.vity of ~ 90 W⋅cm

→ No breakdown on guard rings is observed up to 240 V (Efield ~ 16 V/µm)
→ In 15 µm thick sensors, breakdown is reached in the pad 

EXFLU1 – 15 µm PIN



OpGmised Guard Ring Design – Summary
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◆ 30 µm – single measurement
◆ 30 µm – average
◆ 20 µm – single measurement
◆ 20 µm – average
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OpGmised Guard Ring Design – Summary
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→ 30 µm thick sensors show a bigger variation in the breakdown voltage wrt 20 µm thick ones
→ All guard ring designs are working properly and ensure good operation of the sensors
→ An extensive irradiation campaign will be performed to study the radiation tolerance of each design

◆ 30 µm – single measurement
◆ 30 µm – average
◆ 20 µm – single measurement
◆ 20 µm – average
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Standard LGAD with Carbon Shield
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NB: the bulk of the 45 µm 
substrates swapped into n-type

  Wafer #  Thickness   p+ dose  C dose C shield   Diffusion  
1 45 1.04 1.0 CBL
2 45 1.00 0.6 CBL
3 45 1.06 1.0 0.6 CBL
4 45 1.06 1.0 1.0 CBL
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ProducWon costs increase by ~ 20%
→ Expected improvement in radiaWon tolerance of 20 – 30%
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Standard LGAD – I-V with Carbon Shield
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  Wafer #  Thickness   p+ dose  C dose C shield   Diffusion  
1 45 1.04 1.0 CBL
2 45 1.00 0.6 CBL
3 45 1.06 1.0 0.6 CBL
4 45 1.06 1.0 1.0 CBL

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0 50 100 150 200 250 300 350

Cu
rr

en
t [

A]
Reverse Bias [V]

EXFLU1 – Standard LGAD with C shield – I-V 

 W1

 W2

 W3

 W4

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0 50 100 150 200 250 300 350

Cu
rr

en
t [

A]

Reverse Bias [V]

EXFLU1 – PIN with C shield – I-V 

 W1

 W2

 W3

 W4

Carbon shield shifts 
the breakdown voltage 
to higher values of bias



EvoluGon of the Donor Removal
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A further production batch is needed to study the donor removal

Evolution of donor density: Neff(F) = ND(0)e-cD⋅F - gc⋅F

State-of-the-art [M.Moll et al., doi:10.1016/S0168-9002(99)00842-6]

We need to study donor removal in a range 1016 – 1018 atoms/cm3

NB: Oxygen has for donor removal a very similar effect of Carbon to acceptor removal
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The State-of-the-Art
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Silicon Sensor for Extreme Fluences (eXFlu) project – V. Sola as PI
In 2020, INFN awarded for funding a 2 years grant for young researchers

to develop, produce, irradiate and study thin silicon sensors

Thin LGAD wafers have been produced at FBK 
→ EXFLU0 producNon
▻ 2 different wafer thicknesses: 25 & 35 µm
▻ epitaxial substrates
▻ single pads and 2×2 arrays

Arrived in Torino at the end of 2020

EXFLU0 sensors have been irradiated
at JSI, Ljubljana, to 5 different fluences
1E15, 5E15, 1E16, 5E16, 1E17 neq/cm2
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25 µm LGAD Signal at Different Fluences

→ Necessary to increase the radiaOon tolerance of the gain mechanism above 1015 cm-2

Laser intensity ~ few MIPs
T = –10ºC

Measurements of charge collecWon efficiency (CCE) with an infra-red laser sWmulus 
show that sensors can be operated up to the highest fluences

▻ The LGAD multiplication mechanism
ceases existing at ~ 5·1015 cm-2

▻ From 1016 to 1017 cm-2 the collected 
signal is roughly constant

▻ At high bias the signal increases due
to internal gain, but does not reach
the minimum charge required by the
electronics
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Involved Partners – INFN TO
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▻ The Torino Unit of the Is.tuto Nazionale di Fisica Nucleare (INFN) will
→ coordinate the project and organise the ac.vi.es
→ follow the sensor design and produc.on processes
→ characterisa.on and test of the sensors
→ organise of the irradia.on campaign
→ provide the input to the simula.on and modelling process

⇒ Well-established tradiWon in the development of Low-Gain Avalanche Diodes since the early stage

Laboratory of Innovative Silicon Sensors
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Involved Partners – FBK
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▻ Fondazione Bruno Kessler (FBK) will
→ define the op.mal process flow for the two sensor produc.on
→ take care of the sensors fabricaNon process
→ provide the first sensor characterisa.on at the foundry

⇒ FBK will bring its strong experWse in the design and producWon of silicon sensors with internal gain,
now considered at the state-of-the-art by the scienWfic community.

Previous LGAD productions at FBK (not-exhaustive list)

UFSD1
2016

UFSD2
2017

UFSD3
2018

UFSD3.1
2019

RSD1
2019

UFSD3.2 + EXFLU0
2020

TI–LGAD
2021
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Involved Partners – INFN Pg
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⇒ INFN Pg contribute to the project bringing its experience in the interpretaWon and modelling of 
silicon damage through the development and applicaWon of Technology CAD tools

MPI TS2000 SE
Semi-automa]c probe sta]on

Triaxial thermal chuck -60°C ÷ +200°C

▻ The Perugia Unit of the Is.tuto Nazionale di Fisica Nucleare (INFN) will
→ provide simula.on of the sensor behaviour to drive the produc.on processes
→ par.cipate to the sensor characterisa.on and tes.ng
→ implement the observa.ons into the model
→ extend the sensor modelling to unexplored regions of fluence
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Possible Fields of Interest
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▻ Silicon-based tracker detectors at future high-energy and high-intensity hadron colliders, where the
expected radia[on budget at those machines is above 1E16 cm-2 in the outermost part of the tracking region and
up to 1E18 cm-2 close to the interac[on point.

▻ Beam monitor for parEcle therapy facility, as cancer treatment effec[veness strongly relates to the accuracy
of real-[me monitoring of the beam intensity and profile to op[mise the dose delivery to the cancer [ssue, the
pa[ent safety, and the opera[on of the accelera[ng machine. Par[cle therapy will significantly benefit from
silicon-based monitors that can operate for about one year of pa[ent’s treatments (~ 1E17 cm-2) without being
replaced.

▻ Monitors at the thermonuclear fusion reactors under development. In such an environment, with high
neutron and g fluxes, X-ray monitors are crucial to ensure safe opera[ons, control of the nuclear plasma, and
precise evalua[on of physics phenomena.
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