

Advancement and Innovation for Detectors at Accelerators

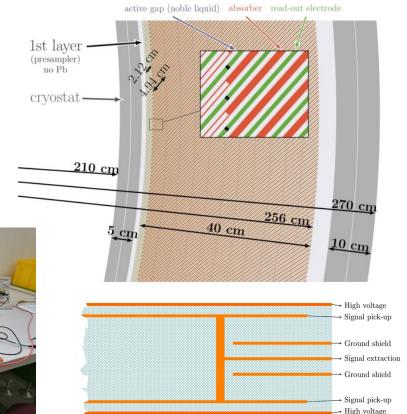
WP8.2.2 status report

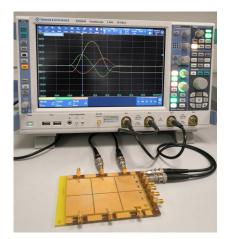
Future Liquid Noble Gas Calorimeters

Jana Faltova (Charles University)

Participants: CERN, CNRS-IJCLab, Charles University

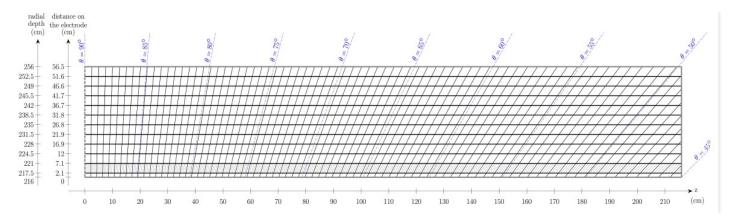
25/4/2023



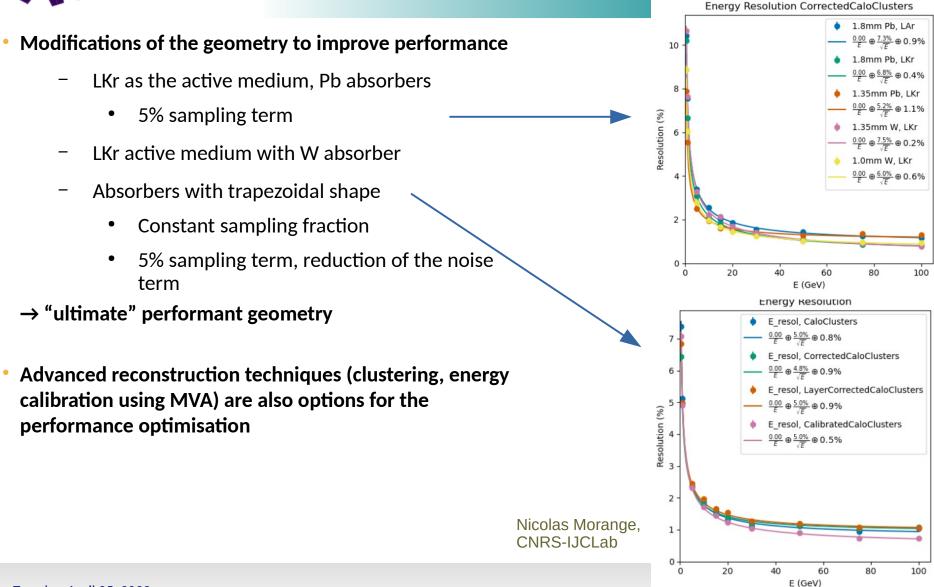

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004761.

AIDA innova Introduction

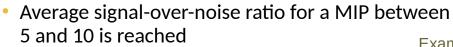
- Task WP8.2.2
 - Design of the read-out electrodes for the future liquid noble gas calorimeters
- Milestone
 - MS31: report for the St. Com. (due date: Feb 2023) DONE


CNRS-IJCLab

CERN

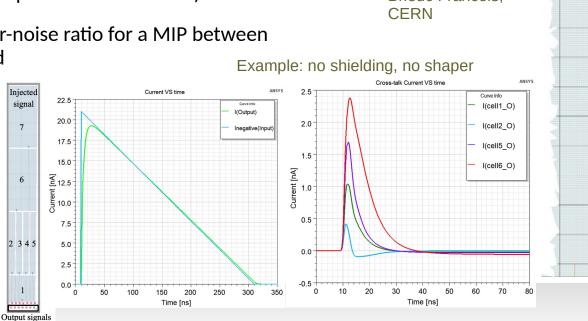

Noble liquid gas calorimeter

- Baseline geometry
 - 1536 Pb absorbers inclined by ~50.4°, |z| ≤ 2 m along the beam axis
 - 2 mm Pb absorber; 1.2 2.4 mm of LAr; 1.2 mm of readout PCB
 - 22 X_o (40 cm) of the active ECAL region
 - Placed in the aluminium cryostat (5 cm in front, 10 cm in back)
- Granularity
 - 12 longitudinal compartments in radius (including pre-sampler for energy corrections and strips for π^0 identification)
 - Typical cell size ~ 2 x 2 x 3 cm³


Geometry under consideration

Design of PCB readout

- Printed Circular Boards (PCBs) with seven layers
 - HV, signal pad, shield, signal trace, shield, signal pad, HV
- Finite Element Method calculations in ANSYS
 - Peak-to-peak crosstalk below 1% seems to be easily achievable (signal shaping time larger than 100 ns even without ground shields, a shorter shaping time will be possible with shields)


Injected

signal

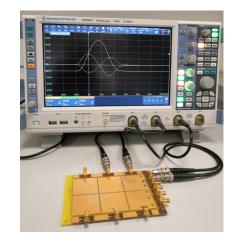
7

6

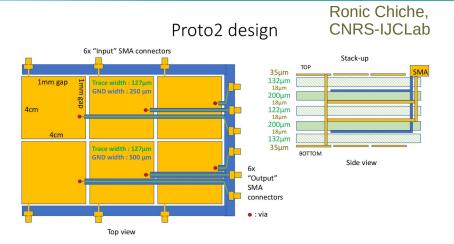
2345

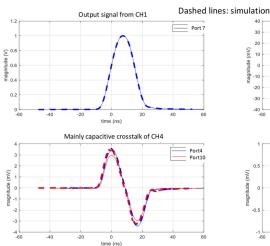
Ground shield Signal extraction Ground shield Signal pick-up High voltage $\theta = 90^{\circ}$ $\theta = 89.44^{\circ}$ Brieuc Francois.

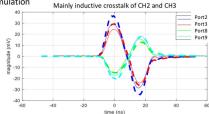
High voltage Signal pick-up

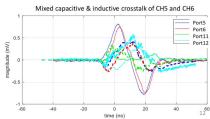


CNRS-IJCLab


Prototype 1



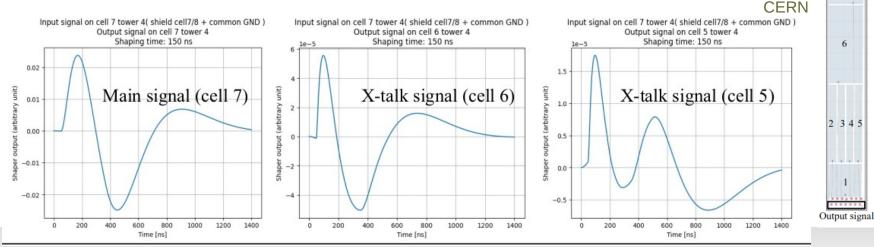

Prototype 2



- PCB with even number of layers
- Measurements of the scattering matrix Sparameters -> impedance and attenuation factors
- Measurements of crosstalk; total capacitance, inductance and coupling parameters per channel extracted
- Overall good agreement between simulations and measurements

CERN

Injected signal

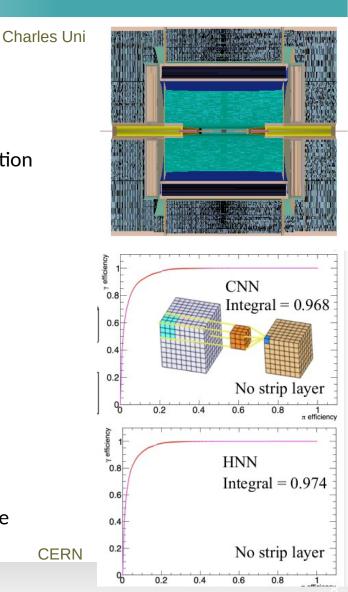

7

Brieuc Francois,

CERN

- Prototype with 1:1 scale in the radial direction with 16 'theta towers' with different layouts (58 cm x 44 cm)
- Odd number of layers PCB achieved by chemically removing one of the copper plane from the pre-preg core
- Triangular input signal injected, the response in the inner cells in the same tower extracted using a 50 Ω readout probe; software shaper
 - Good agreement with the simulations, could be improved especially for small signals and short shaping times

-> Sub-percent crosstalk reachable for regular cells within the tower with a single ground shield



Tuesday, April 25, 2023

Software development

- Full simulation available in Key4HEP
 - Detector description
 - Reconstruction
 - Corrections: sampling fraction, dead material correction
 - Emulation of electronics noise
 - Clustering
- Noble liquid calorimeter in the full detector concept for FCC-ee
 - IDEA drift chamber tracker
 - LAr ECAL barrel & endcaps
 - TileCal HCAL barrel & endcaps
 - Muon tagger
 - -> Code ready for performance and physics studies
 - γ / π^{0} separation studies with MVA: first results lead to 95% γ efficiency for 10% π^{0} contamination for the whole energy range

Summary

- Finite Element Method simulations of the readout electrodes performed
- Protypes of PCBs prepared at CNRS-IJCLab and CERN
 - Measurements show good agreement between simulations and measurements, still room for improvement
 - Sub-percent cross talk is easily reachable in the scenario with a single ground shield
- Full detector concept ready for physics studies in FCCSW
- Next steps
 - Prepare a new electrode design incorporating the lesson learned with the current version

Tuesday, April 25, 2023

Detailed results from simulations

2 shields

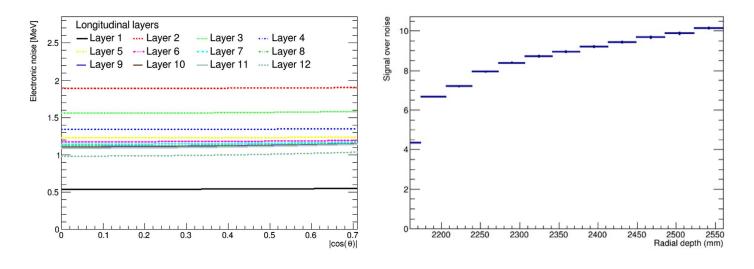
Cross-talk (%)	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6
Shaping time (ns) \downarrow						
No shaper	0.54	0.85	0.85	2.31	2.62	9.11
20	0.03	0.04	0.01	0.09	0.11	0.75
50	0.01	0.02	0.0	0.04	0.05	0.37
100	0.01	0.01	0.0	0.02	0.03	0.23
150	0.0	0.01	0.0	0.02	0.02	0.18
200	0.0	0.01	0.0	0.01	0.02	0.15
300	0.0	0.0	0.0	0.01	0.01	0.13

1 shield

Cross-talk (%)	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6
Shaping time (ns) \downarrow						
No shaper	2.42	0.82	0.87	3.86	4.14	10.36
20	0.4	0.05	0.04	0.58	0.58	1.72
50	0.18	0.02	0.01	0.26	0.26	0.79
100	0.1	0.01	0.0	0.14	0.14	0.45
150	0.07	0.01	0.0	0.11	0.11	0.34
200	0.06	0.0	0.0	0.09	0.09	0.28
300	0.05	0.0	0.0	0.07	0.07	0.23

0 shield

Cross-talk (%)	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6
Shaping time (ns) \downarrow						
No shaper	6.27	2.6	3.2	8.75	8.61	15.96
20	0.7	0.1	0.1	0.99	0.92	2.58
50	0.3	0.02	0.02	0.43	0.4	1.14
100	0.17	0.01	0.01	0.24	0.23	0.64
150	0.13	0.01	0.0	0.18	0.17	0.48
200	0.1	0.01	0.0	0.15	0.14	0.4
300	0.08	0.0	0.0	0.12	0.11	0.32


B. Francois (CERN)

11

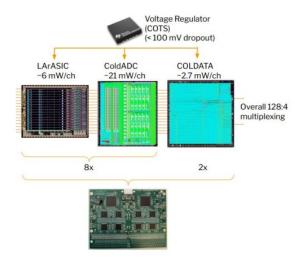
Full readout chain

Analytical description of the full readout chain: two ground shields, a charge preamplifier ($e_n = 0.5 \text{ nV}/\sqrt{Hz}$ and $i_n = 1 \text{ pA} / \sqrt{Hz}$), CR² – RC² shaper (200 ns), followed by 5 m of 100 Ω coax cable

Brieuc Francois, CERN

Cold electronics

Cold electronics?


- Noise master formula:
- $N\sim C_d\sqrt{rac{4kT}{g_m au_p}}$
- Cold electronics: gain on $C_{d'}$, T and g_m
- Extremely low noise easily achievable

$C_{cable} = \frac{\tau_{delay}}{Z_c}$	ENC (keV)	Peaking time = 500 ns		
\mathcal{L}_{c}	Cd = 100pF – 50/25 Ω	1400 / 2500		
Warm electronics	Cd = 200pF – 50/25 Ω	1600 / 2800		
L = 5 m C _{cable} = 500 pF / 1 nF Cold electronics L=10 cm C _{cable} = 10 pF / 20 pF	Cd = 400pF - 50/25 Ω	2100 / 3200		
	Cd = 800pF - 50/25 Ω	2900 / 4100		
	Cd = 100pF - 50/25 Ω	140 / 150		
	Cd = 200pF - 50/25 Ω	250 / 260		
	Cd = 400pF - 50/25 Ω	470 / 470		
	Cd = 800pF - 50/25 Ω	910 / 910		

How?

- Challenges:
 - Heat dissipation
 - Difficulty for repair
- We know how to do it:
 - DUNE example
- Very first studies
 - HGCROC in Liquid N at IJCLab
 - Check behaviour of analogue and digital parts

N. Morange (IJCLab)

AIDAInnova WP8 Meeting, 11/01/2023

14