Fiber hodoscope

P. Valente

Roman pot

Detector concept

One or more layers of fibers:

- Plastic (PMMA, polystyrene) fibers:
 - scintillation (blue)
 - $n_{core} = 1.6$, $n_{cladding} = 1.4$
 - Round or square fibers
 - Diameter/side from 200 μm to few mm

- Quartz (SiO₂) fibers: Cerenkov emission
 - Different cladding materials (silica, hard plastic, PMMA)
 - Core diameter from 100 μm to 2 mm

Directly coupled to multi-channel photodetector (e.g. **multi-anode** PMT)

Scintillating fiber detector

- Fiber detectors (x and y views, 4 layers, 1 mm diameter fibers)
- Working since 2003 at Frascati BTF

Scintillating fiber detector

Single particle sensitivity, response proportional to number of electrons in beam

≈1 photo-electrons/mm at 50 cm from PMT, 20% quantum efficiency

64 channels readout

Possible readout

 MAROC2 chip, developed for scintillating fiber detector for ATLAS luminosity measurement (ALFA)

Figure 1. Schematic of a Roman Pot and the front end electronics.

Figure 1. Schematic representation of the ALFA tracker with overlap detectors and read-out electronics above a roman pot. The mother board sends the formatted data to the common ATLAS readout system upon arrival of an L1 trigger signal.

Another MAROC implementation

Scintillating fiber detector for electron spectrometer (laser-plasma acceleration experiment PLASMONX), now working in Frascati

5×64 channels readout (Hamamatsu R5900 multi-anode) with MAROC2 chips +

MAROC2 readout system

MAROC chip

Interface board

Readout board

MAROC2 readout system

- © Readout through USB interface **slow** (few Hz)
- Need for external trigger, few tens of ns before analog signal
- Radiation tolerance to be checked
- Wilkinson ADC for all channels with simple and compact system

Another possibility...

Quartz fibers:

Cerenkov emission in place Particle of scintillation v>c/n_{core} lower light yield Better radiation resistance $\cos\theta = (n_{core}(v/c))^{-1}$ n_{core} n_{cladding}

- Scintillating fibers: prototype available for testing, some fibers for new detector are available
- Photodetectors: different multi-anode PMT's available
- Silica fibers: 100 m ordered (to be delivered in few weeks)
 - Then, build a prototype and possibly test it (e.g. at BTF)
- MAROC2 system can be borrowed by another experiment for testing, but cannot be installed permanently in UA9...
- Evaluate alternative readout electronics (ideas, suggestions?)

