UA9 Crystal Collimation Workshop 23.02.11

Silicon Strip Beam Telescope at H8

Mark Pesaresi

W. Ferguson, J. Fulcher, G. Hall, M. Raymond, M. Ryan, O. Zorba

Silicon Strip Beam Telescope

New beam telescope built this year for CMS upgrade activities and UA9 experiment

- Partly commissioned and tested in June at H8
- Fully tested and used for UA9 crystal qualification at H8 in September

Test beam performance has been analysed over last few months

Paper to be submitted

Preprint typeset in EDST-style - HYPSR VERSION

Design and performance of a high rate, high angular resolution beam telescope

M. Pesaresi, W. Ferguson, J. Fulcher, G. Hall, M. Raymond, M. Ryan, O. Zorba

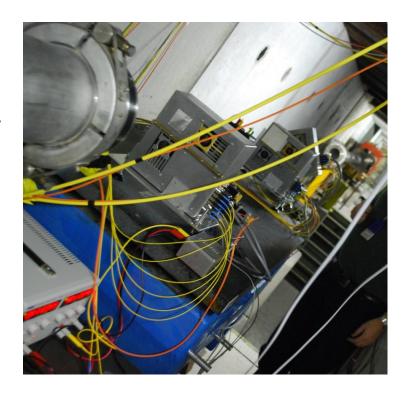
Blackett Laboratory, Imperial College London SW7 2AZ, UK E-mail: mark.pesaresi@imperial.ac.uk

ABSTRACT:

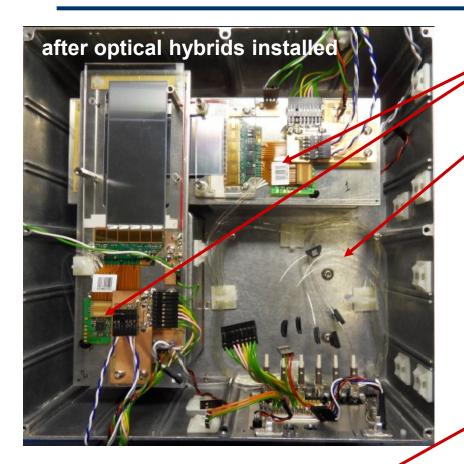
A charged particle telescope has been constructed for data taking at high rates in a CERN 400-GeV/by proteo beam line. It utilises ten planes of silicon microstiny sentors, ramaged six points and the same of 3.8.-3.8 cm². The objective was to provide excellent angular and spatial resolution for measuring the rajectories of incident and outpoing particles. The apparatus has a long baseline, of approximately 10 m in each mm, and achieves a total angular resolution on the difference of the two arms of 5.3 µm, with performance limited by multiple scattering in the sentor layers. The sentors are instrumented by a system accordance on the CMS Tracker electronic readout chain, including analogue signal readout for optimal spatial resolution. The system profits from modified CMS software and hardware to provide a data acquisition capable of sustained trigger rates of up to 7kHz. We describe the sensor readout, electronic hardware and software, together with the measured performance of the telescope.

Keywords: silicon microstrips; beam telescope; APV25; crystal channeling.

Provides five 2D measurements


• 4 XY measurements and 1 UV (45° rotation) measurement to resolve track ambiguities

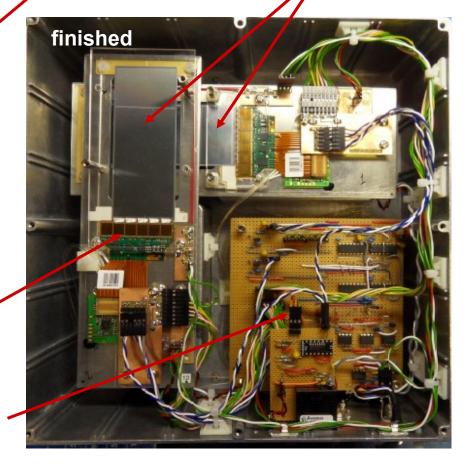
Uses 10 silicon strip sensors intended for the D0 tracker upgrade

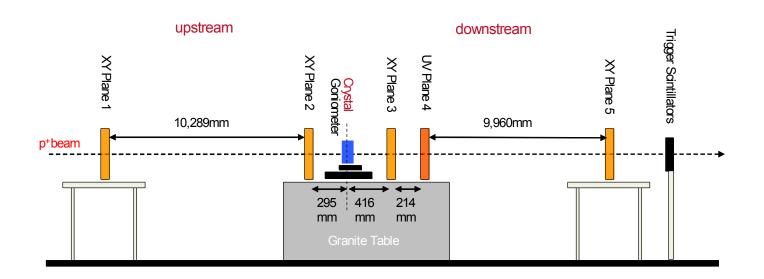

• $60\mu m$ strip pitch with intermediate floating strip to get an effective $<8\mu m$ hit resolution

Readout system based on CMS tracker

- APV25 CMOS chip with 50ns CR-RC shaping time, up to 4µs trigger latency
- Analogue data transmitted over optical fibres to counting room
- Front End Driver digitises, pedestal/CM subtracts and sparsifies data

XY Plane Construction

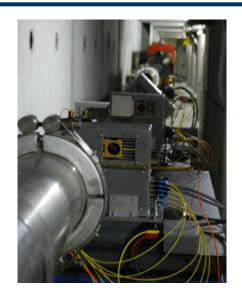



APV25 readout chips

I2C interface circuitry, power supply conditioning, peltier cooling control analogue opto-hybrids

fibres

sensors


Two measurement arms – approximately 10m length in each

- Dominant contribution to angular error from multiple scattering (~2.4 μ rad from ~640 μ m silicon per plane)
- Outgoing arm uses additional UV plane to disambiguate multiple hits downstream of crystal


Telescope Performance

As a whole, system performed well

- All XY planes operationally stable, no connectivity problems
- Temperatures remained constant at 20°
- Took ~3-4 days to commission and debug system after cabling

DAQ/Run Performance

DAQ relatively easy to use and control

Stable operation by the end of the run but some improvements, bug fixes to be implemented

Run statistics summary:

Runs 292-391 (~6 days)

50K events per file

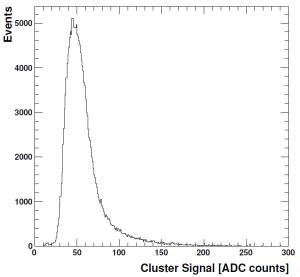
~6000 events/spill

~55 million events collected

Runs 406-552 (~3.5 days)

40K events per file

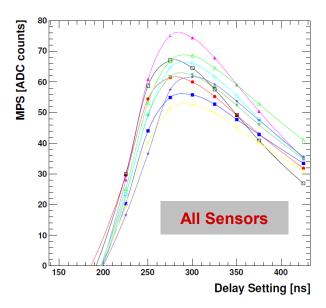
>60,000 events/spill


~133 million events collected

~90-95% events with at least 1 hit per plane

Reached ~7kHz peak readout rate

Sensor Performance


Cluster Signal [ADC counts] Sensor1, APV3

Strip Noise [ADC counts]

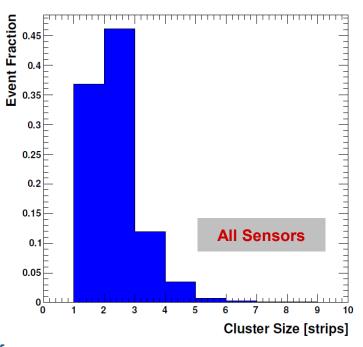
Measured sensor performance during and after test beam

Commissioning steps

- FED fine delay adjustments, frame finding thresholds
- Pedestal analysis for zero suppression
- Trigger latency scan

 Cluster signal maximised by reconstructing APV pulse shape and sampling at peak of pulse

Average channel noise of 2.5 adc counts

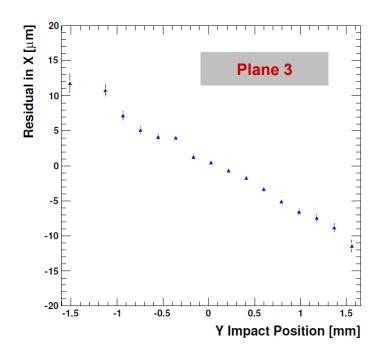

S/N measured between 26-36

Hit finding using thresholds to suppress noise/pileup

- Seed strip S/N>3, neighbouring strips S/N>2, cluster S/N>5
- Hits of cluster size >4 strips rejected
- Average 1.05 clusters per sensor per event
- Intermediate floating strip increases charge sharing across strips – 65% clusters >1 strip wide

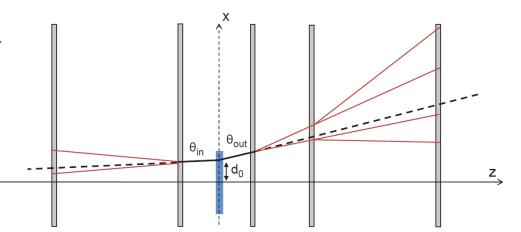
Hit position interpolated using analogue data

- Using simple linear interpolation between two highest charged consecutive strips in a cluster gives hit position
- Intermediate floating strip should therefore give better than half readout strip resolution



Track based alignment procedure

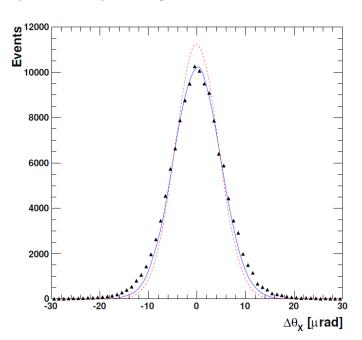
- Uses samples of ~100,000 single track events to measure translational and rotational misalignments between planes
- Translational misalignments estimated using straight line fits between the two most separated planes
- Rotational misalignments estimated by measuring hit residual in one projection vs the impact position in the other projection
- Iterative calculation of misalignment parameters until residual distributions are centred

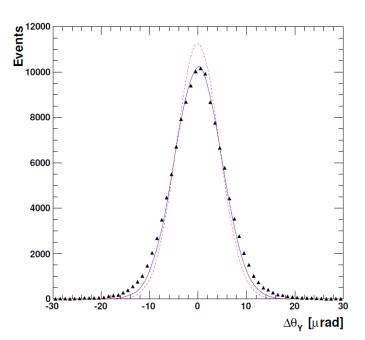

Rotational misalignments vary between 0.1 and 8 mrad

Alignment accuracy <1 μ m for translations and <0.1 mrad for rotations

Track reconstruction

- At least one 2D hit is required in each sensor
- Fitting procedure is a minimisation of two straight line fits (1&2, 3&4&5)
- Three parameter fit $(\theta_{in}, \theta_{out}, d_0)$ per projection
- Tracks with χ^2 >10 are rejected

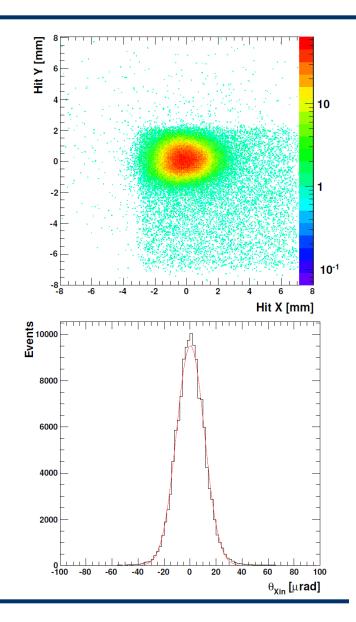



Covariance matrix used in fit takes into account measurement errors for each plane – including contributions from scattering and error correlations between planes

- Simulations give the scattering contribution of each plane as 2.4µrad affects plane 1, 4 and 5
- Error correlations are taken into account between planes 4 and 5
- Sensor resolutions dominate errors in planes 2, 3 and 4 measured using data to be between 6.8-7.0µm

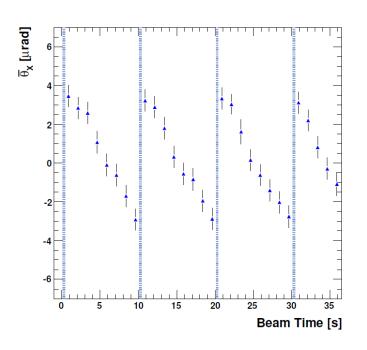
Angular resolution of $\Delta\theta$ = θ_{in} – θ_{out} measured

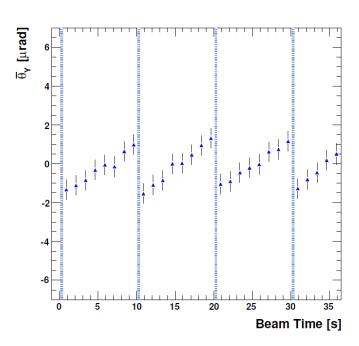
- Using alignment run events (no crystal), resolution of deflection angle is estimated as 5.2 μrad in both x and y
- Simulations predict an angular resolution of 4.4µrad (red curve)
- Including estimates of air in the September test beam within the simulation predicts 5.0μ rad (blue curve) with just a small deviation in the tails


Simulations predict ultimate angular resolution of incoming arm as 2.6 µrad

Beam Measurements

September beam properties measured


- Roughly gaussian beam with a spread of 1.0mm in x and 0.8mm in y
- Non gaussian background probably due to collimators upstream


- Spread in θ_{in} is effectively the divergence of the beam (small contribution from measurement error of θ_{in})
- Divergence measured as 10.7 μ rad in x and 7.6 μ rad in y
- But probably smaller... (next slide)

Periodic beam deflection discovered

- During data analysis, a shift in the beam direction was discovered over the course of a run
- Beam deflection is periodic with period equal to that of spill (~10s)

- Total deflection measured at 6.5μrad in x and 2.5μrad in y over a spill
- Will clearly increase divergence and possibly other channeling measurements to date, or in future

Silicon strip telescope commissioned and tested last year at H8

Performance studied in detail

- Average S/N ~31; good noise rejection
- Sensors give good spatial resolution; ~7.0μm
- Each XY plane contributes ~2.4µrad to angular error due to multiple scattering
- \bullet Track based alignment now takes into account translational and rotational misalignments to within 1 μ m and 0.1mrad respectively
- Track reconstruction now estimates angular resolution on deflection measurement as 5.2 µrad
- Angular error on incoming arm ultimately estimated at 2.6 µrad

Possibility to reduce total angular resolution by eliminating air from system

Cause of beam deflection effect should be investigated – can it be eliminated? Is it important for channeling measurements?