Bosonic Quantum Interface: Characterization, Engineering, and Application

Kero Lau
Department of Physics, Simon Fraser University
Affiliate Fellow, Quantum Algorithm Institute

RESEARCH CHAIRS

CIO JOURNAL
Amazon Rolls Out Quantum-Computing Service
Select customers will be able to test quantum algorithms, hardware

Forbes

Perhaps Google Will Kill Bitcoin, After All

Billy Bambrough Contributor (1)
Crypto \& Blockchain
I write about how bitcoin, crypto and blockchain can change the world.

Which quantum platform is the best?

Which quantum platform is the best?

Solid-state spin

Microwave in cavity

Optical photon

Which quantum platform is the best?

Solid-state spin

V Long memory time
X Hard to connect

Microwave in cavity

V High controllability
\mathbf{X} Short memory time

Optical photon
∇ Fast transmission
X Hard to store

Which quanturn platform is the best?

Solid-state spin

V Long memory time
X Hard to connect

Microwave in cavity

V High controllability
\mathbf{X} Short memory time

Optical photon

∇ Fast transmission
X Hard to store

Solid-state spin
Microwave in cavity
Optical photon

Build interface to connect different platforms

Bosonic system $=$ Harmonic oscillators $\quad H=\frac{1}{2} Q^{2}+\frac{1}{2} P^{2}$

Bosonic system $=$ Harmonic oscillators $\quad H=\frac{1}{2} Q^{2}+\frac{1}{2} P^{2}$
Q quadrature $\quad P$ quadrature

Mechanical oscillator	Position	Momentum
Photon/Microwave	Vector potential	Electric field
Spin ensemble	\# of spins pointing X	\# of spins pointing Y

Example: State transfer

$$
\begin{gathered}
\text { Perfect swap } \\
Q_{2}(T)=Q_{1}(0) \\
P_{2}(T)=P_{1}(0)
\end{gathered}
$$

Example: State transfer

Perfect swap
 $$
\begin{aligned} & Q_{2}(T)=Q_{1}(0) \\ & P_{2}(T)=P_{1}(0) \end{aligned}
$$

Imperfect swap

$$
\begin{aligned}
& Q_{2}(T)=T_{Q Q} Q_{1}(0)+T_{Q P} P_{1}(0)+R_{Q Q} Q_{2}(0)+R_{Q P} P_{2}(0) \\
& P_{2}(T)=T_{P Q} Q_{1}(0)+T_{P P} P_{1}(0)+R_{P Q} Q_{2}(0)+R_{P P} P_{2}(0)
\end{aligned}
$$

Example: State transfer

Perfect swap

$$
\begin{aligned}
Q_{2}(T) & =Q_{1}(0) \\
P_{2}(T) & =P_{1}(0)
\end{aligned}
$$

Imperfect swap

$$
\begin{aligned}
& Q_{2}(T)=T_{Q Q} Q_{1}(0)+T_{Q P} P_{1}(0)+R_{Q Q} Q_{2}(0)+R_{Q P} P_{2}(0) \\
& P_{2}(T)=T_{P Q} Q_{1}(0)+T_{P P} P_{1}(0)+R_{P Q} Q_{2}(0)+R_{P P} P_{2}(0)
\end{aligned}
$$

Imperfect state transfer

Microwave-spin interface
Wesenberg et al, PRL (2009)
Insufficient interaction strength

Incomplete transmission

Imperfect state transfer

Microwave-spin interface
Wesenberg et al, PRL (2009)
Insufficient interaction strength

Incomplete transmission

Light-atom interface

Julsgaard et al, Nature (2004)

Undesired type of interaction

Partial transmission

Can we "repair" the interface?

$$
t=0
$$

Time

Initial state

Can we "repair" the interface?

$$
t=0
$$

Time

Interface

Initial state

Can we "repair" the interface?

$$
t=T \quad t=0
$$

Can we "repair" the interface?

$$
t=T \quad t=0
$$

Can we "repair" the interface?

$$
t=T \quad t=0
$$

What can we do on a single oscillator?

What can we do on a single oscillator?

What can we do on a single oscillator?

What can we do on a single oscillator?

Are they useful for correcting an interface?

What can we do on a single oscillator?

Are they useful for correcting an interface?
:

If we can apply arbitrary single-mode correction, how can we convert an interface to another?

If we can apply arbitrary single-mode correction, how can we convert an interface to another?

Inconvertible classes of interface

Local QND gate | Beam splitter, |
| :---: |
| Two-mode |
| squeezing |\quad SWAP+QND SWAP

If we can apply arbitrary single-mode correction, how can we convert an interface to another?

Inconvertible classes of interface

Local	Beam splitter, Two-mode squeezing	SWAP+QND	SWAP	
Transmitted quadratures Reflected quadratures	0	2	2	2

If we can apply arbitrary single-mode correction, how can we convert an interface to another?

Inconvertible classes of interface

	Local	QND gate	Beam splitter, Two-mode squeezing	SWAP+QND	SWAP
Transmitted quadratures	0	1	2	2	2
Reflected quadratures	2	2	2	1	0

If we can apply arbitrary single-mode correction, how can we convert an interface to another?

Inconvertible classes of interface

$$
\binom{Q_{2}(T)}{P_{2}(T)}=\left(\begin{array}{ll}
T_{Q Q} & T_{Q P} \\
T_{P Q} & T_{P P}
\end{array}\right)\binom{Q_{1}(0)}{P_{1}(0)}+\left(\begin{array}{ll}
R_{Q Q} & R_{Q P} \\
R_{P Q} & R_{P P}
\end{array}\right)\binom{Q_{2}(0)}{P_{2}(0)}
$$

If we can apply arbitrary single-mode correction, how can we convert an interface to another?

Inconvertible classes of interface

If we can apply arbitrary single-mode correction, how can we convert an interface to another?

Inconvertible classes of interface

				new	
	Local	QND gate	Beam splitter, Two-mode squeezing	SWAP+QND	SWAP
Transmitted quadratures	0	1	2	2	2
Reflected quadratures	2	2	2	1	0

$$
\text { Rank } \quad\binom{Q_{2}(T)}{P_{2}(T)}=\left(\begin{array}{ll}
T_{Q Q} & T_{Q P} \\
T_{P Q} & T_{P P}
\end{array}\right)\binom{Q_{1}(0)}{P_{1}(0)}+\left(\begin{array}{ll}
R_{Q Q} & R_{Q P} \\
R_{P Q} & R_{P P}
\end{array}\right)\binom{Q_{2}(0)}{P_{2}(0)}
$$

How can we fix imperfect interface?

How can we fix imperfect interface?

Just ask experimentalists to improve their system

How can we fix imperfect interface?

Just ask experimentalists to improve their system

Tell experimentalists clever tricks to control their system

If one interface is bad...

If one interface is bad... ...then use it again!

If one interface is bad... ...then use it again!

Two wrongs make a right, too good to be true?

Trick: apply single-mode correction in between

Overall state transfer becomes perfect!

Trick: apply single-mode correction in between

Overall state transfer becomes perfect!

Don't want injected squeezing or measurement?

Don't want injected squeezing or measurement?

Apply the imperfect interface one more time!

Don't want injected squeezing or measurement?

Apply the imperfect interface one more time!

Any three interface = perfect swap

Don't want injected squeezing or measurement?

Apply the imperfect interface one more time!

Any three interface = perfect swap
Necessary \& sufficient

Interface other than perfect swap?

Yurke et al., PRA 33, 4033 (1986)

Two-mode-squeezing for SU(1,1) interferometry

Interface other than perfect swap?

Two-mode-squeezing for SU(1,1) interferometry

Huh et al., Nat. Photonics 9, 615 (2015)

Beam-splitters for boson-sampling

Interface other than perfect swap?

Two-mode-squeezing for SU(1,1) interferometry

Menicucci et al., PRL 97, 110501 (2006)

Huh et al., Nat. Photonics 9, 615 (2015)

Beam-splitters for boson-sampling

QND gate for CV quantum computing

Interface other than perfect swap

Local

Transmission
strength χ

$\chi=0$

Interface other than perfect swap

	Local	QND gate	Transmitted: 2 Reflected: 2	NEW SWAP+QND	SWAP
Transmission strength χ	$\chi=0$	$\chi=0$	$\chi \neq 0$	$\chi=1$	$\chi=1$
		Two-mode squeezing	Beam splitter	NEW SWAP + TMS	
				K	
		$0>\chi$	$1>x>0$	$\chi>1$	

Two interfaces are interconvertible iff they have same χ

Interface other than perfect swap

Two interfaces are interconvertible iff they have same χ

Beam-splitter

$$
\left(\begin{array}{cc}
\sin \theta & 0 \\
0 & \sin \theta
\end{array}\right)
$$

Transmission matrix

$\chi_{B S}=\sin ^{2} \theta$

Beam-splitting angle

Beam-splitter

Two-mode squeezing

$$
\left(\begin{array}{cc}
\sinh r & 0 \\
0 & -\sinh r
\end{array}\right)
$$

Transmission matrix
$\chi_{B S}=\sin ^{2} \theta$

Beam-splitting angle

$$
\begin{aligned}
& \chi_{T M S}=-\sinh ^{2} \\
& \text { Squeezing strength }
\end{aligned}
$$

Beam-splitter

$\left(\begin{array}{cc}\sin \theta & 0 \\ 0 & \sin \theta\end{array}\right)$ $\chi_{B S}=\sin ^{2} \theta^{\text {Beam-splititing angle }}$

Two-mode squeezing

Transmission matrix

Squeezing strength (Phase insensitive amplification)

$$
\chi_{S T M S}=1-\chi_{T M S}=\cosh ^{2} r
$$

Beam-splitter

Two-mode squeezing
$\left(\begin{array}{cc}\sin \theta & 0 \\ 0 & \sin \theta\end{array}\right)$
Transmission matrix

$$
\begin{gathered}
\chi_{B S}=\sin ^{2} \theta_{K} \\
\text { Beam-spliting angle }
\end{gathered}
$$

$$
\begin{array}{cc}
\left(\begin{array}{cc}
\sinh r & 0 \\
0 & -\sinh r
\end{array}\right) & \chi_{T M S}=-\sinh ^{2} r \\
\text { Transmission matrix } & \text { Squeezing strength }
\end{array}
$$ (Phase insensitive amplification)

Swapped two-mode squeezing

Engineering arbitrary interface except SWAP
 = engineer interface with arbitrary χ

Engineering arbitrary interface except SWAP
 = engineer interface with arbitrary χ

Engineering arbitrary interface except SWAP

= engineer interface with arbitrary χ

Engineering arbitrary interface except SWAP

= engineer interface with arbitrary χ

Only two interface is required

SWAP engineering revisited

Any three interface = perfect swap

SWAP engineering revisited

Any three interface = perfect swap

SWAP engineering revisited

Any three interface = perfect swap

SWAP engineering revisited

Any three interface = perfect swap

Squeezing restriction

How does squeezing restriction affect interface engineering?

1. Modified Classification

	Local	QND gate	BS, TMS, sTMS	SWAP+QND	SWAP
Transmitted quadratures Reflected quadratures	0	2	1	2	2
Transmission strength	$\chi=0$	$\chi=0$	$\chi \neq 0,1$	$\chi=1$	$\chi=1$

1. Modified Classification

	Local	QNo gate	BS. TMS. sTMS	swaprono	swap
	人	$<$		$<$	\int^{i}
$\substack{\text { Trananmitred } \\ \text { quadratures }}$	0	1	2	2	2
Reflected quadratures	2	2	2	1	0
Transmissionstrength	$x=0$	$\chi=0$	$x \neq 0,1$	$x=1$	$x=1$
	Irreducible squeezing Λ				
		$\begin{aligned} & \text { Itreadutible } \\ & \text { Shtearing } \end{aligned}$			

1. Modified Classification

Local
Transmitted quadratures Reflected quadratures
Transmission strength

Restricted mode

$$
\longrightarrow\binom{Q_{2}(T)}{P_{2}(T)}=\left(\begin{array}{ll}
T_{Q Q} & T_{Q P} \\
T_{P Q} & T_{P P}
\end{array}\right)\binom{Q_{1}(0)}{P_{1}(0)}+\left(\begin{array}{ll}
R_{Q Q} & R_{Q P} \\
R_{P Q} & R_{P P}
\end{array}\right)\binom{Q_{2}(0)}{P_{2}(0)}
$$

1. Modified Classification

	Local	QND gate	BS, TMS, STMS	SWAP+QND	SWAP
Transmitted quadratures	0	1	2	2	2
Reflected quadratures	2	2	2	1	0
Transmissio strength	$\chi=0$	$\chi=0$	$\chi \neq 0,1$	$\chi=1$	$\chi=1$
	Irreducible squeezing Λ				
	icted mode	Irreducible Shearing κ			$\propto\left(\begin{array}{cc} \Lambda & 0 \\ 0 & \Lambda^{-1} \end{array}\right)$
	$\rightarrow\left(\begin{array}{l} Q_{2} \\ P_{2}(\end{array}\right.$	$\left(\begin{array}{cc}T_{Q Q} & T_{Q P} \\ T_{P Q} & T_{P P}\end{array}\right)$	($\left.\begin{array}{l}Q_{1}(0) \\ P_{1}(0)\end{array}\right)+\begin{aligned} & R_{Q Q} \\ & R_{P Q}\end{aligned}$	$P)\binom{Q_{2}(0)}{P_{2}(0)}$	Ratio of singular values

1. Modified Classification

	Local	QND gate	BS, TMS, STMS	SWAP+QND	SWAP
Transmitted quadratures	0	1	2	2	2
Reflected quadratures	2	2	2	1	0
Transmissio strength	$\chi=0$	$\chi=0$	$\chi \neq 0,1$	$\chi=1$	$\chi=1$
	Irreducible squeezing Λ				
	ted mode $\rightarrow\left(\begin{array}{l} Q_{2}(T \\ P_{2}(T \end{array}\right.$	Irreducible Shearing k $\left(\begin{array}{ll} T_{Q Q} & T_{Q P} \\ T_{P Q} & T_{P P} \end{array}\right)$	Off-diagonal $\left.\begin{array}{l} Q_{1}(0) \\ P_{1}(0) \end{array}\right)+\left(\begin{array}{l} R_{Q Q} \\ R_{P Q} \end{array}\right.$	$\left.P_{P}\right)\binom{Q_{2}(0)}{P_{2}(0)}$	$\Delta_{\propto}\left(\begin{array}{cc} \Lambda & 0 \\ 0 & \Lambda^{-1} \end{array}\right)$ Ratio of singular values

2. More parameters to engineer

Four interface protocol

2. More parameters to engineer

Four interface protocol

2. More parameters to engineer

Four interface protocol

Bosonic Quantum Interface: Characterization, Engineering, and Application

Interface: connect quantum systems \& process quantum information

Bosonic Quantum Interface:
 Characterization, Engineering, and Application

Interface: connect quantum systems \& process quantum information

Bosonic Quantum Interface:

Characterization, Engineering, and Application

Interface: connect quantum systems \& process quantum information

Any interface can be engineered by cascading at most 5 fixed interfaces

Bosonic Quantum Interface:

Characterization, Engineering, and Application

Interface: connect quantum systems \& process quantum information

Any interface can be engineered by cascading at most 5 fixed interfaces

Postdoc \& grad student positions available

HKL \& Clerk, npj Quant. Inf. 5, 31 (2019) Fong, Poon, HKL, arXiv:2212.05134

