Jun 18 – 23, 2023
University of New Brunswick
America/Halifax timezone
Welcome to the 2023 CAP Congress Program website! / Bienvenue au siteweb du programme du Congrès de l'ACP 2023!

(G*) Renormalizing the unquenched quark model

Jun 19, 2023, 3:15 PM
15m
UNB Tilley Hall (Rm. 205 (max. 85))

UNB Tilley Hall

Rm. 205 (max. 85)

Oral Competition (Graduate Student) / Compétition orale (Étudiant(e) du 2e ou 3e cycle) Nuclear Physics / Physique nucléaire (DNP-DPN) (DNP) M2-4 Hadronic physics, nucleon structure, QCD | Physique hadronique, structure des nucléons, QCD (DPN)

Speaker

Cyrus Robertson Orkish

Description

Hadrons are typically described using "quenched" constituent quark models, which posit a Hamiltonian acting on the state space of the valence quarks, neglecting mixing of higher Fock states. In recent years, experimentalists have observed states which are not well characterized by these models, motivating quark modellers to examine the effects of unquenching. The resultant mass shifts throw the entire predicted spectrum into disagreement with observation, which may indicate that the leading-order effects of unquenching have been absorbed into the phenomenologically-measured parameters of the quenched Hamiltonian. We have calculated corrections to the spectrum using a formalism which estimates and compensates for the effects of this parameter renormalization, leaving small residual mass shifts which better reflect the observable effects of unquenching.

Keyword-1 Hadrons
Keyword-2 Unquenched quark model
Keyword-3 Renormalization

Primary author

Co-author

Stephen Godfrey (Carleton University)

Presentation materials

There are no materials yet.