Jun 18 – 23, 2023
University of New Brunswick
America/Halifax timezone
Welcome to the 2023 CAP Congress Program website! / Bienvenue au siteweb du programme du Congrès de l'ACP 2023!

(G*) Storage lifetime of ultracold neutrons in superfluid helium between 1.0 K and 1.8 K

Jun 20, 2023, 4:45 PM
15m
UNB Kinesiology (Rm. 201 (max. 98))

UNB Kinesiology

Rm. 201 (max. 98)

Oral Competition (Graduate Student) / Compétition orale (Étudiant(e) du 2e ou 3e cycle) Nuclear Physics / Physique nucléaire (DNP-DPN) (DNP) T4-6 Precision Physics and Tests of Fundamental Symmetries | Physique de précision et tests des symétries fondamentales (DPN)

Speaker

Sean Vanbergen

Description

Ultracold neutrons (UCNs) are a powerful tool for probing fundamental physics, enabling precision measurements in a variety of research areas, such as beta decay, electric dipole moments, and gravitational quantum states. To advance these experimental efforts it is necessary to develop new, high-density UCN sources capable of providing order-of-magnitude improvements in statistical sensitivity. The TRIUMF UltraCold Advanced Neutron (TUCAN) collaboration is building a new spallation-driven superthermal UCN source using superfluid helium, which will enable a new generation of UCN-based precision experiments. The performance of this source will depend on the storage lifetime of UCNs in the superfluid volume, which is expected to have a temperature-dependence given by $\tau^{-1} = BT^7$. In this talk, I will present the results of experimental efforts to measure this dependence using a prototype UCN source.

Keyword-1 Neutrons
Keyword-2 Ultracold neutrons
Keyword-3 Superfluid helium

Primary author

Presentation materials