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Moving on up…
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Challenges with prediction:

● Many-body problem is hard, especially 

with many-nucleon interactions

● Disagreements between various theories 

Challenges with experiment:

● Need specialized facilities  (RIBF,  

radioactive isotope beam factory)

● Exotic nuclei have small half lives

● Very few events observed
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Challenges with prediction:

● Many-body problem is hard, especially 

with many-nucleon interactions

● Disagreements between various theories 

Challenges with experiment:

● Need specialized facilities  (RIBF,  

radioactive isotope beam factory)

● Exotic nuclei have small half lives

● Very few events observed

Idea: use quantum computers?

IonQ’s trapped ion system. Credit: Duke University, staq.pratt.duke.edu/



Our work          (arXiv:2306.06432 [nucl-th])
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arXiv link:

Code: 



The physics problem
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Shell-model description:

● Inert 16O core + {2, 4, 6, 8, 10} valence neutrons 

● sd-model space: 0d
5/2

, 1s
1/2

, 0d
3/2

 orbitals for single-particle states

Single-particle energies (ϵi) and two-body matrix elements (Vijkl) for 4 interactions:

● 1 phenomenological (USDB)

● 3 microscopic (JISP16, DJ16, N3LO)
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Every state described by |n, l, j, jz, tz〉.

● Neutrons only, so tz=1/2

● For ground state, choose cases where jz = 0

● 12 possible states
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j 5/2 5/2 5/2 5/2 5/2 5/2 1/2 1/2 3/2 3/2 3/2 3/2
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Qubit 0 1 2 3 4 5 6 7 8 9 10 11

Example: The qubit state |110000000011〉corresponds to a system with 4 

neutrons where

● Two neutrons are in 0d
5/2

 with jz= -5/2  and jz= 5/2

● The other two are in 0d
3/2

 with jz=-1/2 and jz= 1/2

The quantum computing problem



The variational eigensolver
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A near-term algorithm used to find the ground state energy of a Hamiltonian, H. 

 



Example: 18O
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Only 2 neutrons; how many combinations with total jz = 0?
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Qubit 0 1 2 3 4 5 6 7 8 9 10 11

Only 2 neutrons; how many combinations with total jz = 0?

|110000000000〉
|001100000000〉

|000011000000〉
|000000110000〉

|000000001100〉
|000000000011〉



Computational results
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Resource counts (12-qubit problem)
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Isotope 1-qubit gates 2-qubit gates Depth

18 13 23 15

20 154 158 182

22 1063 787 1036

24 176 158 184

26 37 23 17

Hamiltonian: 199 Pauli strings (subset of original from 1611) – 13 qubit-wise commuting sets



Resource counts (12-qubit problem)

24

Isotope 1-qubit gates 2-qubit gates Depth

18 13 23 15

20 154 158 182

22 1063 787 1036

24 176 158 184

26 37 23 17

Hamiltonian: 199 Pauli strings (subset of original from 1611) – 13 qubit-wise commuting sets



Resource counts (5-qubit tapered* problem)
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Isotope 1-qubit gates 2-qubit gates Depth

18 40 8 24

20 55 26 45

22 59 35 55

24 67 36 58

26 39 8 24

Hamiltonian: 52 Pauli strings – 8 qubit-wise commuting sets *Leverages symmetries in the Hamiltonian
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Isotope 1-qubit gates 2-qubit gates Depth

18 40 8 24

20 55 26 45

22 59 35 55

24 67 36 58

26 39 8 24

Hamiltonian: 52 Pauli strings – 8 qubit-wise commuting sets *Leverages symmetries in the Hamiltonian



Experiments:

● Transpile to hardware-native gates
● Evaluate at variational minimum for 

DJ16 interaction
● 8 circuits per isotope w/1000 shots

Running on hardware

IonQ’s trapped ion system. Credit: Duke University, staq.pratt.duke.edu/
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Hardware:

● IonQ Aria (23 trapped-ion qubits; 
hyperfine levels of Yb ions)

● Accessed through Microsoft Azure 
Quantum cloud service

(not Aria,  but same kind of machine!)



Results
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Error mitigation: systematically 
scale up the noise by adding pairs 

of redundant 2-qubit gates



Results
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Error mitigation: extrapolate back 
to the zero noise limit
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(not Aria,  but same kind of machine!)

💰💰💰



Results
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(not Aria,  but same kind of machine!)

💰💰💰
Error bars: bootstrapped from 
device statistics (std. dev. of 
1000 MC simulations with 

1000 shots per circuit) 



Future work
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● How to extend this to larger nuclei…

○ with near-term algorithms/hardware?

○ with the large-scale hardware of the future?

● How do we improve and systematically automate

○ ansatz circuit design?

○ problem size reduction?

What role will quantum computers play in nuclear physics?  

What practical advantage will they afford? 
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â†
k = ½ (∏k-1

j=0 -Zj) (Xk - i Yk)

âk = ½ (∏k-1
j=0 -Zj) (Xk + i Yk)

Perform Jordan-Wigner transformation:

This re-expresses the Hamiltonian in terms of 12-qubit Pauli operators.

The quantum computing problem



https://github.com/QSAR-UBC/ionizer 38

Running on hardware: transpilation



Example: 18O
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Design a quantum circuit that creates states 

that are a linear combination of:

Start with |110000000000〉then apply 

unitary rotations of the form 

G2(θ)|1100〉= cosθ|1100〉+ sinθ|0011〉

|110000000000〉|001100000000〉 

|000011000000〉|000000110000〉

|000000001100〉|000000000011〉



Example: 18O
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