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Introduction

• High-purity germanium (HPGe) detectors widely
used in beyond Standard Model rare event searches
(0νββ, dark matter, etc.)[2, 3, 4, 5, 6, 7, 8, 9]

[10]

• Electronic noise makes signal identification challenging
• Rare events in the presence of backgrounds

• Noise removal could help advance these searches
• Identify low-energy signal events that would otherwise be dominated by electronic noise
• Improved background rejection based on pulse shapes
• More accurate measurements of pulse amplitudes → better energy resolution

• Deep learning has been successfully used in other fields (typically 2D images)
• Why not 1D pulses from HPGe detectors?
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Autoencoders

• An autoencoder is an algorithm used to learn a useful representation of data
• Trained to map the inputs to the inputs (with some form of constraint)

[11]

• By definition, an autoencoder is lossy
• The goal is to retain as much useful information as possible

• Typically a (deep) neural network
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Denoising autoencoders

• Denoising autoencoders impose the constraint that reconstruction must also remove noise
• Proposed as a method to extract robust features for other classification tasks[12]

• Input becomes a corrupted version of x, x̃, by some process qD

⋯⋯⋯

[1]

Internal/latent representation, y:

fθ(x) = y

Input reconstruction, z:

gθ′ (y) = gθ′ (fθ(x)) = z

Minimize some loss function quantifying the
reconstruction of x, L(x, z)

L(x, z) =
1

N

N∑
i

∥zi − xi∥22
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The detector

• Signals are from a 1 kg p-type point contact
detector located at Queen’s University

• Cylindrical with a radius of 3 cm and height of 5 cm
• Manufactured by ORTEC/AMTEK
• Operated in a PopTop cryostat

[13]
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• Each signal is a sequence of voltages sampled
at a fixed interval

• Observed noise levels after preprocessing
reflect energy of pulse; signal-to-noise
ratio (SNR)

• Different rise times reflect different positions
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Datasets: real detector data

Americium-241 source
• Produces 60 keV γs
• Almost entirely single-site events
• Lower energy (higher noise), good for validation

Cobalt-60 source
• Produces 1173 keV and 1332 keV γs
• Numerous multi-site events from Compton scatters
• Higher energy (lower noise), good for training

Detector noise
• Collected by randomly triggering the detector (and

removing actual signals that occasionally occur)
• Used for data augmentation

241Am

60Co
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Datasets: real detector data (preprocessing)

• Data pulses preprocessed to remove baseline
• Data pulses have exponential decay removed with pole zero correction
• Data pulses scaled by amplitude (calculated with a trapezoidal filter)

Amplitude
normalization
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Datasets: simulated data
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Library pulses
• 1724 simulated “library” pulses[14]

• Each pulse corresponds to point on
1mm× 1mm azimuthally symmetric grid

• Created using siggen simulation software[15]

• Used to infer position of real events

Piecewise linear smoothed (PLS) pulses
• Mimic the general shape of the library pulses

without the requirement of complex physics
simulations
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Datasets: simulated data (data augmentation)

• From the simulated single-site event pulses, can create a diverse training set
• Combine single-site simulated pulses to create artificial multi-site events
• Apply random horizontal shifts, vertical shifts, and amplitude scales to each pulse
• Add detector noise to each pulse with a random standard deviation
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Note: no preprocessing required for simulated pulses!
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Training procedures

Regular
• Trained to map the noisy pulse to the corresponding clean underlying pulse
• Must know the true pulse – only works on simulated data

Noise2Noise[16]

• Trained to map noisy pulse to noisy pulse (different noisy realizations of same underlying signal)
• An impossible task in practice
• Model will instead learn to predict the mean, given infinite different noisy realizations

• Can be used with simulations, but this is not required
• For detector data, add even more noise to the already noisy pulse
• Include a total variation penalty[17] to original loss function L0 to account for the noisy true mean
• Penalize the absolute difference between given sample (j) and subsequent sample (j + 1) in pulse
• Apply scaling factor λ to control weighting

L = L0 +
λ

N

N∑
i

M−1∑
j

|zi,j+1 − zi,j |

9/26



Training procedures

Regular
• Trained to map the noisy pulse to the corresponding clean underlying pulse
• Must know the true pulse – only works on simulated data

Noise2Noise[16]

• Trained to map noisy pulse to noisy pulse (different noisy realizations of same underlying signal)
• An impossible task in practice
• Model will instead learn to predict the mean, given infinite different noisy realizations

• Can be used with simulations, but this is not required
• For detector data, add even more noise to the already noisy pulse
• Include a total variation penalty[17] to original loss function L0 to account for the noisy true mean
• Penalize the absolute difference between given sample (j) and subsequent sample (j + 1) in pulse
• Apply scaling factor λ to control weighting

L = L0 +
λ

N

N∑
i

M−1∑
j

|zi,j+1 − zi,j |

9/26



Training procedures

Regular
• Trained to map the noisy pulse to the corresponding clean underlying pulse
• Must know the true pulse – only works on simulated data

Noise2Noise[16]

• Trained to map noisy pulse to noisy pulse (different noisy realizations of same underlying signal)
• An impossible task in practice
• Model will instead learn to predict the mean, given infinite different noisy realizations

• Can be used with simulations, but this is not required
• For detector data, add even more noise to the already noisy pulse
• Include a total variation penalty[17] to original loss function L0 to account for the noisy true mean
• Penalize the absolute difference between given sample (j) and subsequent sample (j + 1) in pulse
• Apply scaling factor λ to control weighting

L = L0 +
λ

N

N∑
i

M−1∑
j

|zi,j+1 − zi,j |

9/26



Training procedures

Regular
• Trained to map the noisy pulse to the corresponding clean underlying pulse
• Must know the true pulse – only works on simulated data

Noise2Noise[16]

• Trained to map noisy pulse to noisy pulse (different noisy realizations of same underlying signal)
• An impossible task in practice
• Model will instead learn to predict the mean, given infinite different noisy realizations

• Can be used with simulations, but this is not required
• For detector data, add even more noise to the already noisy pulse
• Include a total variation penalty[17] to original loss function L0 to account for the noisy true mean
• Penalize the absolute difference between given sample (j) and subsequent sample (j + 1) in pulse
• Apply scaling factor λ to control weighting

L = L0 +
λ

N

N∑
i

M−1∑
j

|zi,j+1 − zi,j |

9/26



Noise2Noise

Original 60Co data pulse (low noise/high energy/large SNR)
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Noise2Noise

Original 60Co data pulse with a random noise pulse
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Noise2Noise

Original 60Co data pulse with another random noise pulse
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Noise2Noise
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Results: simulations

• Qualitatively, denoising with deep learning
performs very well on simulations

• Autoencoder is superior to all traditional
denoising methods investigated

• Compared mean squared error on test set
containing simulated single-/multi-site events

• Each method optimized on a separate
validation set to select hyperparameters

• Regular training procedure (simulations)
outperforms Noise2Noise (60Co data)

• Still very good performance with
Noise2Noise
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Results: simulations (energy resolution)

• In terms of physics results, allows for an
improvement in the energy resolution

• Energy calculated from the amplitude of a
trapezoidal filter with given shaping time

• FWHM of peak is the energy resolution

• Created test datasets with different noise levels
and evaluated the energy resolution of each

• At every noise level and shaping time, the
results after denoising with our autoencoder are
superior

• Proportionally larger improvements with
increasing noise level, decreasing shaping time

0 5 10 15 20 25 30
Trapezoidal filter shaping time ( s)

0.01

0.02

0.03

0.04

En
er

gy
 re

so
lu

tio
n

Noisy simulated pulses
Denoised pulses

[1]

↙ Noise level of 0.10

|

0.05 0.10 0.15 0.20
Noise level

0

10

20

30

40

Re
la

tiv
e 

en
er

gy
 re

so
lu

tio
n

im
pr

ov
em

en
t (

%
)

2.0 s
4.1 s
9.6 s

16.0 s
28.8 s

[1]

16/26



Results: data

• Qualitatively, denoising with deep learning
performs very well on data

• More difficult to quantify denoising
• No true underlying pulse to compare to

• However, can make a statistical comparison to
evaluate the performance
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Results: data (χ2 comparison)

• 241Am dataset contains mostly single-site
events from 60 keV γs

• Use a χ2 comparison between the original pulse
and denoised pulse, best-fit library pulse

χ2 (xi, zi) =

M2∑

j=M1

(zi,j − xi,j)
2

σ2
i

• χ2 distribution between noisy and
denoised pulse is consistent with expected
χ2 distribution of our detector noise

• Taken over 200 samples containing rise region
(M1, M2 set appropriately)
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Results: data (energy resolution)

• Can also evaluate the effect of denoising on the energy resolution, compare to simulations

• Using 241Am data, optimal energy resolution is comparable before and after denoising

• Much lower shaping time required to achieve
good energy resolution

• Important for data storage, analysis, etc.

• However, results are not as good as simulations
would suggest
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Results: data (energy resolution)

• We assume data pulses have one exponential decay and correct for that
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• In reality, there are multiple sources of exponential decay, usually small, but still contribute
• A single “effective” pole zero correction is thus imperfect and leaves residual effects from

the other exponential decays
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Results: data (energy resolution)

Simulated pulse with noise
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Results: data (energy resolution)

Simulated pulse with noise (convolved with multiple exponentials)
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Results: data (energy resolution)

Simulated pulse with noise (deconvolved with one “effective” exponential)
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Results: data (energy resolution)

Simulated pulse with noise (deconvolved with one “effective” exponential)
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Conclusions and future work

• Deep convolutional autoencoders are effective at removing electronic noise from HPGe
detector pulses

• Outperforms various traditional denoising methods
• Denoised pulses are statistically consistent with data pulses
• Can reach optimal energy resolution with a lower shaping time

• Simulations suggest improvements in the overall optimal energy resolution are possible
• Accounting for effects present in real data could improve results

• Models can be trained without the need for detailed detector simulations
• PLS pulses are a very rough approximation to library pulses
• Noise2Noise method requires only noisy detector data

• Results could likely be improved with more (diverse) data
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Conclusions and future work

• Results presented here are focused on HPGe detector data
• Noise removal is beneficial in many contexts
• Our group is applying these methods to signals from other detector technologies

• Gaseous proportional counters (e.g., see talk from Noah Rowe), bubble chambers

• Our group is also exploring various extensions of this research
• New network architectures such as CycleGAN[18] for improved performance

• Potential to improve modelling of multiple exponential decays, and thus energy resolution, due
to the less stringent requirement of unpaired simulated and detector pulses

• Continuous inline denoising before triggering to reduce trigger thresholds
• Useful to identify low SNR events otherwise dominated by electronic noise

• Work is broadly applicable to the particle astrophysics community and has great potential
to be expanded on
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Thank You!
More details in the published paper.

Check it out!

doi:10.1140/epjc/s10052-022-11000-w
arXiv:2204.06655
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Model architecture

• Fully convolutional autoencoder
• Weight sharing provides consistent noise removal across pulse
• Feature locality and shift equivariance
• Allows for a variable input shape (subject to some restrictions)
• Significant reduction in the number of trainable parameters

[19]
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Model architecture
Layer Stride Window Output
Input 4096, 1
Convolution 1 1 4096, 8
Convolution 1 9 4088, 16
Average Pooling 2 2 2044, 16
Convolution 1 17 2028, 32
Average Pooling 2 2 1014, 32
Convolution 1 33 982, 64
Average Pooling 2 2 491, 64
Convolution 1 33 459, 32
Transpose Convolution 1 33 491, 32
Upsampling 2 2 982, 64
Transpose Convolution 1 33 1014, 64
Upsampling 2 2 2028, 64
Transpose Convolution 1 17 2044, 32
Upsampling 2 2 4088, 32
Transpose Convolution 1 9 4096, 16
Convolution (output) 1 1 4096, 1

[1]
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Results on simulations

Training procedure and data Mean squared error (×10−5)

Gaussian noise Detector noise

Procedure Data Noise Library PLS Library PLS

Regular Library Detector 4.12 4.72 3.76 4.21
Regular Library Gaussian 3.40 3.82 4.50 4.77
Regular PLS Detector 5.10 4.48 4.15 3.57
Regular PLS Gaussian 3.93 3.36 5.02 4.31

N2N (λ = 0) Library Detector 3.90 4.37 3.86 4.20
N2N (λ = 0) Library Gaussian 3.46 3.87 4.57 4.82
N2N (λ = 0) PLS Detector 5.11 4.48 4.14 3.55
N2N (λ = 0) PLS Gaussian 3.85 3.46 4.97 4.43

N2N (λ = 0) Detector Detector 6.54 6.30 7.78 7.40
N2N (λ = 10−2) Detector Detector 4.17 4.54 5.04 5.26

[1]
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Trapezoidal filter

[20]
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Noise curve
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CycleGAN
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