Latest updates and results from the DEAP-3600 experiment

Susnata Seth (on behalf of the DEAP collaboration)

CAP Congress, 2023 University of New Brunswick, Canada

June 19, 2023

Arthur B. McDonald Canadian Astroparticle Physics Research Institute

The DEAP Collaboration

- Dark matter Experiment using Argon Pulseshape discrimination
- The DEAP-3600 experiment searches for Weakly Interacting Massive Particle (WIMP) dark matter (DM) candidate.

experiment

GADM Program

DEAP-3600

- It is located approximately 2 km underground at SNOLAB in Sudbury, Canada.
- Collected data from 2016 2020, now completing hardware upgrades.
- Expected to fill the detector and start collecting data near early 2024.

Talks presented in this meeting:

- Pushparaj Adhikari [June 19, 2023 11:00 AM] Removal of dust particulates to reduce alpha backgrounds
- Michael Perry [June 19, 2023, 4:30 PM] Pulseshape discrimination using SiPM and Argon-1
- Emma Ellingwood [June 21, 2023, 4:15 PM] Overview of ⁸B-solar neutrino absorption search with DEAP-3600 detector.
- Chris Jillings [June 20, 2023, 3:30 PM] Some aspects of future of Global Argon Dark Matter program.
- Bansari Vyas [June 19, 2023, 4:00 PM] TPB coating for the DarkSide-20K detector.

The DEAP-3600 Experiment

Timeline

- Development and construction : 2006-2016
- Data collection (first DM run): 2016-2020
- Hardware upgrades: 2020 to end of 2023
- New running: 2024-on

- Stable data collection for DM search.
- 80% blind since January, 2018.

Analyses:

- Results with first-year (231 live days) dataset was published.
- **Development of Profile Likelihood Ratio (PLR) statistical analyses** for WIMP search using first-year dataset is underway.
- The analysis of full (802 live days) dataset is ongoing.
 - Improving background models
 - Improving position reconstruction
 - Including multivariate analysis (MVA) to improve WIMP signal acceptance.
 - Three MVA algorithms are trained against α background events.
 - Developing new variables and validating background models.
 - Re-optimization of event selection will be performed to complete blind analysis.

The DEAP-3600 detector

WIMP elastically scatters off argon nuclei .

Scintillation photons produced peaked at ultraviolet wavelength (128 nm) is shifted to visible wavelengths (~420 nm) via a layer of tetraphenyl butadiene (TPB) wavelength shifter coated on inner surface of acrylic vessel.

Photons are detected by 255 inward-facing PMTs

Liquid argon scintillation pulseshape

- A pulseshape model is developed for electromagnetic background events in the energy region of interest for WIMP search.
- Pulseshape from ³⁹Ar beta decay has been used.
- Model contains: (a) liquid argon scintillation including intermediate scintillation, (b) time response of TPB wavelength shifter, (c) PMT response.

Pulseshape discrimination (PSD)

- Scintillation time profile provides discrimination between nuclear recoil and electron-recoil events ---nuclear recoil event produces more light in prompt time window.
- World leading performance for rejection of electron recoils (ERs) : At 110 photoelectron (PE) (~18 keV_{ee}), leakage probability of about 10⁻¹⁰ is achieved at nuclear recoil acceptance 50%.

Results of WIMP search from first-year dataset

Region of Interest (ROI) is defined in F_{prompt} and PE parameter space such that expected background is less than 1 events.

Ref: Phys. Rev. D 100, 022004 (2019)

- Most stringent limit on spin-independent WIMPnucleon cross-section argon-based among experiments.
- Further improvement is limited by alpha-backgrouds ---- requires improvements in background model along with hardware upgrades.

10⁴

Development of additional α -background model

• A background component model is developed:

 α -decays from trace amount of dust particulate contamination within liquid argon.

- Attenuation of energy before entering in liquid argon and scintillation light is shadowed by dust particulates itself.
- Causes fewer scintillation photons.
- During installation, dust particulates could enter DEAP-3600 detector.
 - Ex-situ measurements of metallic dust using nitrogen gas supports this hypothesis.
- Different dust sizes are simulated and the size distribution is modelled by a power law.
- Fit performed in photoelectron spectrum and extrapolated to lower energy region.

[see talk presented by Pushparaj Adhikari on June 19, 2023 11:00 am]

Improvement in alpha quenching model

- A relative measurement is performed in the high energy region (~ 5-8 MeV) with alpha-decays from ²²²Rn, ²¹⁸Po and ²¹⁴Po.
- Quenching data from T. Doke et.al's measurement [Ref: NIM A 292(1988) 269] for ²¹⁰Po source is taken as calibration data.
- Probed the uncertainty of extrapolating the quenching factor to the low-energy region (up to 10 keV).
- Direct measurement of alpha quenching (few hundreds of keV – few MeV) at Carleton University in a small argon detector is underway.

• Preparing paper for publication.

Planck-scale mass DM particles

- Well motivated dark matter candidate with Planck-scale mass; could have higher cross-section than WIMPs.
- Event signature:
 - Contains multiple nuclear recoil scatters : produces multiple peaks in the signal
 - Low F_{prompt}
- Distinguishable from pile-up signals.

In 813 live days data, no event was found in the ROI for this search.

Constrain the DM masses between (8.3 \times 10⁶ - 1.2 \times 10¹⁹) GeV/c² and ⁴⁰Ar-scattering cross-sections between 1 \times 10⁻²³ and 2.4 \times 10⁻¹⁸ cm²

First experiment to reach Planck-scale sensitivity due to large detector size.

³⁹Ar specific activity measurement

• Specific activity : $S_{Ar39} = \frac{N}{T_{live} \times m_{LAr}}$, where m_{LAr} is mass of LAr and total number of ³⁹Ar decays N = N_{single} + N_{pile-up}

- Measured individually for each run in the dataset based on a fit to low $\rm F_{promt}$ energy spectrum.
- $m_{LAr} = (3279 \pm 96) \text{ kg}$ (Previous) $m_{LAr} = (3269 \pm 24) \text{ kg}$ (This work)

Measurement	Specific activity [Bq/kg _{atmAr}]
WARP [13] ArDM [14]	$\begin{array}{c} 1.01 \pm 0.02_{stat} \pm 0.08_{sys} \\ 0.95 \pm 0.05 \end{array}$
DEAP-3600 (this work)	$0.964 \pm 0.001_{stat} \pm 0.024_{sys}$
The most presice measurement of the specific	

Physics Searches and Measurements

WIMP dark matter search

Published/coming up

- Sensitivity using 231 live-days data [PRD 100, 0022004 (2019)]
- Re-interpretation of result using Non-Relativistic Effective Field Theory (NREFT) and considering effect of DM halo substructures [PRD 102, 082001 (2020)]
- PLR analysis with first-year dataset
- Analyses is in progress with three-year dataset
- Planck-scale dark matter search [PRL 128, 011801 (2022)]
- Measurements and Event Reconstruction
 - Electromagnetic backgrounds and potassium-42 activity [PRD 100, 072009 (2019)]
 - Pulseshape model [EPJ C, 80, 303 (2020)], Pulseshape discrimination [EPJ C 81, 823 (2021)]
 - ³⁹Ar specific activity [arXiv:2302.14639, accepted EPJ C], ³⁹Ar lifetime measurement
 - Alpha quenching model, Position reconstruction in DEAP-3600 detector
- Other searches
 - ⁸B solar neutrino absorption in argon [see talk by Emma Ellingwood on June 21, 2023, W3-1 4:15 PM]
 - Search for inverse β decay of ⁴⁰Ar induced by ⁸B solar neutrino.
 - Solar axion search
 - 5.5 MeV axion could be produced in the Sun's core: $p + {}^{2}H \rightarrow {}^{3}H + a$ (instead of γ)
 - This search requires detailed knowledge of gamma backgrounds at high energy (MeV region)

12

Summary

- The DEAP-3600 experiment is primarily looking for dark matter particles and is sensitive to various physics searches and measurements as well.
 - Excellent performance :
 - pulseshape discrimination (nuclear and electron recoil events)
 - Background rejection
 - Event reconstruction
 - Analyses in progress:
 - Analyses with full dataset for WIMP search
 - New searches/measurements
 - New data taking starting soon after completing hardware upgrades .
- Project is part of Global Argon Dark Matter (GADM) program:
 - Completion of the DEAP experiment (~2 years of new data)
 - The DarkSide-20K experiment is starting in 2026
 - Developing ARGO experiment for 2030

Thank you for your kind attention

Extra Slides

WIMP Search: Coming Up

Multivariate analysis (MVA) [Random forest (RF), Boosted decision trees (BDT), Neural networks (NN)] **for background rejection** (neck alpha, dust alpha for example).

Developing new variables and validating backgrounds models.

Surface Alpha Backgrounds

- Originated from 210 Po α -decays on inner surface of the acrylic vessel.
 - Results in peak in 18000- 22000 PE range
- Surface alpha background is constrained by fiducial cuts.

Phys. Rev. D 100, 022004 (2019)

WIMP Search: Neck Alpha Backgrounds

- Originated from ²¹⁰Po α -decays on the acrylic surfaces of flowguides located at the neck of the detector.
- Produces significant backgrounds at low energy due to **shadowed/degraded** alpha decays.
- Position of shadowed alpha-decay events tends to reconstruct within fiducial volume.

Optical model :

- Assumes the surfaces of flowguides are coated with a thin liquid argon layer.
- Results in an F_{prompt} distribution consistent with data.

WIMP Search: Neutron Backgrounds

- **Cosmogenic neutron backgrounds :** Produced by high energy atmospheric muon interactions with the detector and its surroundings.
 - <u>Reduction process:</u>
 - tagging muon induced Cherenkov signal in the water tank.
- **Radiogenic neutron backgrounds:** Produced by (α, n) reactions induced by α -particles emitted from Uranium/Thorium decay chains or by spontaneous fission of ²³⁸U isotope present in different detector components.
 - *Mitigation process:*
 - Estimation of neutron flux and energy spectra from each detector components.
 - Neutron capture analysis : tagging NR event closely followed (1ms) by high energy ER event.

Neutrons thermalize within acrylic and liquid Argon by producing high energy γ -rays (2.2 MeV, 6.1 MeV).

WIMP Search

- Selection of nuclear recoil using PSD technique.
- Rejection of α -decays from ²¹⁰Po on acrylic vessel inner surface using fiducial cuts.
- Rejection of shadowed of α -decays from ²¹⁰Po on the acrylic flowguides in the neck of the detector with dedicated cuts.