The P-ONE site with four years of data

1 3181. 0 0

Braeden Veenstra CAP Congress June 21 -2023

P-ONE

N. Bailly et al. Eur. Phys. J. C, 81(1071), 2021.

P-ONE is an initiative between physicists in Canada, Germany, the US, Poland and UK who are building a neutrino telescope in the North Pacific.

We are partnered with Ocean Networks Canada, who have experience with deploying ocean based experiments, and maintain extensive undersea infrastructure.

Introduction

- Strings of optical modules instrumented with PMTs detect cherenkov light from charged particles produced in neutrino interactions.
- A large volume of water is required because neutrinos have a small interaction probability.
- Using a neutrino telescope, one can make high-energy cross-section and oscillation measurements, as well as look for point sources of cosmic neutrinos.

STRings for Absorption length in Water

Biofouling and Sedimentation

 Organic and inorganic sedimentation can build up on underwater infrastructure.

\$1

- Bacteria and other living organisms can also colonize surfaces and grow.
- We observed some buildup of material on STRAW during an inspection in 2020.

4745.3686N, 12743.96998W, 2591m 2020-09-11 18:04:02, Hdg: 172

ANTARES Pathfinder - Biofouling Results (Amram et al 2003)

- The ANTARES collaboration measured the fouling of their optical surfaces in the Mediterranean.
- They extrapolated an annual efficiency loss of 2.4%.

6

Method Using Natural Light (Bioluminescence)

- Organisms in the water produce light, a phenomenon known as bioluminescence.
- Fouling accumulates more quickly on upwards facing substrates (ANTARES)
- Large fluctuations track between upwards and downwards PMTs.
- We can estimate efficiency losses due to fouling by taking the ratio of up/down as a function of time.

Measuring Fouling Directly with the Flasher

- Pulses from the LED flasher are counted in every second in a 20-60 second run.
- The expected number of flashes is then calculated based on the flasher frequency, and measured live-time.
- So long as the properties of the water don't change significantly, any decrease in the detection probability can be attributed to efficiency losses.

Preliminary result with 4-years of data

SDOM1 SDOM5 SDOM2 SDOM3 SDOM4

- A significant loss in efficiency is observed over time.
- The most extreme losses are in the module closest to the sea-floor.

Biologically Motivated Models

A linear fit is a useful benchmark, but what we actually see is a delay with minimal losses followed by a rapid transition.

To characterize this, we fit biophysical models for population growth, since our underlying assumption is that the efficiency losses are driven by biofouling.

Summary and Next Steps

- Biofouling and sedimentation are effects that are relevant to neutrino experiments in natural water.
- Analysis of 4-years of data using the first P-ONE pathfinder show a significant drop in transparency of the optical surface.
- The P-ONE collaboration is preparing a paper on these results, pending cross-checks and input from the Biology/Marine Science community on the composition of fouling samples.
- Our next step is to evaluate anti-fouling techniques that can be deployed with future phases of P-ONE.

Questions

