LoLX phase 2

SiPM testing, assembly and operation

CAP congress 18-23 June 2023 Fredericton

Stéphanie Bron for the LoLX collaboration

ĿŎ-LX

LoLX: Light-only Liquid Xenon experiment

- Small cube instrumented with photosensors
- Cube immersed in liquid xenon (LXe)
- Placed in a cryostat \rightarrow xenon at 160K (-110C)

LoLX: Light-only Liquid Xenon experiment

- Setup at McGill
- TRIUMF: design, development of LoLX detectors, data collection and analysis

1) Study light in liquid Xenon and validate simulations

- Study light in liquid Xenon and validate simulations
 Photosensor R&D: silicon photomultipliers (SiPMs), new sensor
 - technologies, etc.

- 1) Study light in liquid Xenon and validate simulations
- Photosensor R&D: silicon photomultipliers (SiPMs), new sensor technologies, etc.
- 3) Gain experience in **operating SiPMs** over long time periods impact on devices?

- 1) Study light in liquid Xenon and validate simulations
- Photosensor R&D: silicon photomultipliers (SiPMs), new sensor technologies, etc.
- 3) Gain experience in **operating SiPMs** over long time periods impact on devices?

Inform **future rare-decay experiments** (neutrinoless double beta decay, lepton flavor universality)

		LoLX	nEXO	PIONEER
*	LXe	4-5 kg	5 tons	7 tons
	E field	no	yes	no
and	Energy	$\sim 0.2-2~{ m MeV}$	${\sim}2.5~{\rm MeV}$	$0-70 {\rm ~MeV}$
	nSiPMs	80	50'000	N/A

PIONEER: talk from Kate Pachal and from Thomas Brunner nEXO: talk from Samin Majdi and Soud Al Kharusi

Light in liquid xenon

Energy deposit in LXe: Xe ionization/excitation → scintillation ~175nm

Fig. from N. Larsen (2012) Thesis Prospectus, Yale University

Light in liquid xenon

Radioactive source (90 Sr) \rightarrow beta decay \rightarrow Cherenkov light

Light in liquid xenon

Silicon PhotoMultipliers: SiPMs

- Arrays of single-photon avalanche diodes (SPADs)
- Radiopure, very good single photon separation
- Custom vacuum ultraviolet (VUV) SiPMs: Hamamatsu and FBK (Fundazione Bruno Kessler)

LoLX phase 2: design

FBK SiPM testing before installation

• 64 FBK SiPMs tested

FBK SiPM testing before installation 64 FBK SiPMs tested: 40 SiPMs selected for LoLX

FBK SiPM testing before installation 64 FBK SiPMs tested: 40 SiPMs selected for LoLX

Cube assembly at McGill

PMT on top of cube 5 tiles with SiPMs 8 FBK + 8 HPK /tile

19 20 10

Cabling and insertion in cryostat at McGill

Results: heatmap of the cube

Results: heatmap of the cube

Results: heatmap of the cube

38% good SiPMs

Foreseen measurements with LoLX 2

 Photon yield and relative photodetection efficiency of FBK and Hamamatsu SiPMs, and PMT

Foreseen measurements with LoLX 2

- Photon yield and relative photodetection efficiency of FBK and Hamamatsu SiPMs, and PMT
- Cherenkov light measurement with optical filters/timing

Foreseen measurements with LoLX 2

- Photon yield and relative photodetection efficiency of FBK and Hamamatsu SiPMs, and PMT
- Cherenkov light measurement with optical filters/timing
- External cross talk (eXT) measurement

(see talk from David Gallacher)

Summary

- Modular facility R&D
- Light in LXe, simulations
- Experience with SiPMs in LXe
- Inform future LXe large-scale experiments

Thank you for your attention

LoLX Collaboration: Canada-US-Italy

Fabrice Retière Chloé Malbrunot Austin de St. Croix Colin Hempel Zach Charlesworth Peter Margetak Alex Sorokin Pietro Giampa Stéphanie Bron

Thomas Brunner David Gallacher Soud Al Kharusi Eamon Egan Lisa Rudolph

Simon Viel Bindiya Chana

Marc-André Tétraut Alaa al Marsi

Luca Galli Marco Francesconi

Ethan Brown Kirsten McMichael

Additional slides

LoLX 1 vs LoLX 2

	Gen1	Gen2	
design	octogonal	cubic	
matorial	3D printed plastic	hydrocarbon	
material	(problem: fluorescence)	ceramic	
		40 Hamamatsu VUV4 SiPMS	
nhotosonsors	96 Hamamatsu	40 FBK VUV3 SiPMs	
photosensors	VUV4 SiPMs	1 PMT Hamamatsu	
		R8520-406	
cooling system	cryostat cooled	cryostat with compressor	
cooming system	with liquid N_2	cryostat with compressor	
	CAEN v1740	WaveDREAM	
data acquisition	62.5 MHz sampling rate	up to 5GHz sampling rate	
system	$\rightarrow 16 \text{ ns}$	$\rightarrow < ns$	
	resolution	resolution	

Results: IV curves after installation McGill

voltage [V]

- Installation slightly challenging
- 63% of SiPM channels working

2D and 3D SPADS

(c)

Figure 4. Illustration of the trade-off between the SPAD and the electronic functionality for 2D PDCs sharing the same technology node compared to a 3D PDC. In (**a**), a 2D PDC with large SPAD (blue), but limited in-pixel electronics functionalities (yellow). In (**b**), a 2D PDC with small SPAD (blue), but greater in-pixel electronic functionalities (yellow). In (**c**), a 3D PDC with large SPAD (blue) and large area for in-pixel electronic functionality (yellow).

Future rare-decay experiments

PIONEER

Is the neutrino the same particle as the antineutrino? → look for *neutrino-less double beta-decay*

Is the **lepton flavor universality** violated? → measure branching ratio of pion decay to electron (rare) and muon

$$R_{e/\mu} = \Gamma(\pi^+ \to e^+ \nu(\gamma)) / \Gamma(\pi^+ \to \mu^+ \nu(\gamma))$$

PDE(λ , V) = QE (λ) • P_{Trigger} (V) • ϵ

QE = **Quantum Efficiency** - efficiency of conversion process of a photon into an electron-hole pair in the active region of the SPAD

P_{Trigger} = **Geiger Efficiency** - probability that the generated electron-hole pair triggers a Geiger breakdown in the SPAD

 ϵ = **Geometric Efficiency** - ratio of total active region of the SPADs and SiPM "active area"

- $\lambda = Wavelength$
- V = Voltage

Table 1: PMT and SIPM Comparison						
Characteristic	Photomultiplier Tube (PMT)	Silicon Photomultiplier (SiPM)				
Sensitivity	Single photon	Single photon				
Gain	To 10 ⁷	To 10 ⁶				
Operation voltage	800V to 2000V	30V to 50V				
Large area	Yes	Yes, scalable				
High-density arrays	No	Yes				
High granularity/ resolution	No	Yes				
Dark noise	Low	Middle				
Uniformity	Good	Excellent				
Response time	Fast	Very Fast				
Photon-counting resolution	Good	Excellent				
Temperature sensitivity	Low	Medium				
Immunity to ambient light	No	Yes				
Immunity to magnetic fields	No	Yes				
Compactness and light weight	No	Yes				

_ .

Background discrimination

Figure 3: Cherenkov photon yield for 136 Xe $0\nu\beta\beta$ and photoelectric interactions of gammas of $Q_{\beta\beta}$ energy as obtained from the GEANT4 simulations used in this work.