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• Cosmic rays interact in Earth’s middle 

atmosphere to produce muons [1].

• Muons can easily penetrate matter by 

multiple kilometres.

• Underground and underwater muons 

are crucial in data analyses and the 

design of Dark Matter and neutrino 

detectors.

• Therefore, good knowledge of their 

flux is important in calculations of 

expected muon-induced backgrounds.

Introduction
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Depth-Intensity Relations
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• Depth Intensity Relations [2, 3] are a common 

way of calculating underground muon fluxes.

• Disadvantages:

1. They are simple parametric fits.

2. They are susceptible to statistical errors 

at deep slant depths.

3. They are approximate and introduce 

systematic errors for θ > ~20° [4].

• MUTE (MUon inTensity codE) solves all three 

of these problems.

• It is a computational tool written in Python that 

calculates muon spectra underground.

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.73.053004
https://arxiv.org/abs/astro-ph/0512125
https://iopscience.iop.org/article/10.3847/1538-4357/ac5027/meta
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MCEq [5]

PROPOSAL [6]

Detector

One-dimensional fast 

cascade equation solver.

Monte Carlo code that  

transports leptons through 

long ranges of matter quickly.

Surface

Rock

Method – Overview

[5] A. Fedynitch, et al., Phys. Rev. D 100 (2019) 103018.

[6] J.-H. Koehne, et al., Computer Physics Communications 184 (2013) 2070.

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.103018
https://www.sciencedirect.com/science/article/abs/pii/S0010465513001355?via%3Dihub
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Underground Fluxes

Method – Convolution

• A convolution is performed to calculate underground fluxes:



• Underground intensities for mountains are first calculated on a grid of constant 

zenith angles and slant depths.

• Using a map of the mountain profile, these intensities are then interpolated to the 

slant depths 𝑋(𝜃, 𝜙) that define the mountain.
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Method – Labs under Mountains

𝐼𝑢(𝜃, 𝑋) 𝑋(𝜃, 𝜙) 𝐼𝑢(𝜃, 𝜙)



• The user can switch out models to be used in MCEq for surface flux calculations.

Method – Surface Flux Models

DDM [7]:

• Data-driven model for 

hadronic interactions.

• Uses low-energy 

accelerator data.

• Extrapolates to 

higher energies using 

Feynman scaling.

[7] A. Fedynitch and M. Huber, Phys. Rev. D 106 (2022) 083018 [2205.14766].

[8] J.P. Yañez and A. Fedynitch, 2303.00022.

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.083018
https://arxiv.org/abs/2205.14766
https://arxiv.org/abs/2303.00022


DAEMONFLUX [8]:

• Combines DDM and 

Global Spline Fit 

(GSF).

• Calibrated to muon 

flux and ratio data.

• Φ𝜈 uncertainties 

<10% up to 1 TeV.

• The user can switch out models to be used in MCEq for surface flux calculations.
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Results – Vertical Underground Intensity

PRELIMINARY

PRELIMINARYStandard Rock
Water and Ice
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Results – Comparison to Data

• Uncertainties have been reduced from 15% to ~1% by using DAEMONFLUX.

PRELIMINARY
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Results – Comparison to Data

• Uncertainties have been reduced from 15% to ~1% by using DAEMONFLUX.
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Results – Total Underground Flux

• Total flux calculations are consistent with measurements for labs under flat

overburdens and mountains within theoretical errors in nearly every case.
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Results – Total Underground Flux

• Total flux calculations are consistent with measurements for labs under flat

overburdens and mountains within theoretical errors in nearly every case.
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Results – Total Underground Flux

PRELIMINARY
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Seasonal Variations

• The phenomenon of seasonal modulations in the muon flux is well-known [9]:

[9] M. Agostini, et al., Journal of Cosmology and Astroparticle Physics 2019 (2019) 046.

https://iopscience.iop.org/article/10.1088/1475-7516/2019/02/046
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Seasonal Variations – Results

• I have calculated the amplitude of seasonal variations around the globe:

PRELIMINARY

• The muon flux is lower at the surface in summer in the northern hemisphere.

• However, there are more higher-energy muons in the summer, which reach deeper 

underground. Therefore, the muon flux is higher underground in summer.



Seasonal Variations – Results

• MUTE can calculate seasonal variation amplitudes to high accuracy.
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Applications – Angular Distributions

• MUTE can also calculate one-dimensional 

angular distributions for labs under mountains 

in the θ and ϕ directions.

• Results for the Gran Sasso mountain have 

been compared to data from the LVD 

experiment.

• We obtain very good agreement for the muon 

spectrum and flux, and for the shape of the 

mountain.

• This serves as a way of verifying the data 

analysis of the LVD experiment.

PRELIMINARY

PRELIMINARY
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Conclusion

• MUTE is flexible, fast, and precise. It gives a full description of muon distributions

underground and underwater, and can provide forward predictions for total muon

fluxes.

• The results match experimental data very well for all physical observables. This can

be used to cross-check data analyses.

• Uncertainties have been significantly reduced with the latest model, DAEMONFLUX.

• MUTE is public and available (pip install mute) to be used by experiments in

labs under flat overburdens and mountains.

doi:10.3847/1538-4357/ac5027 https://github.com/wjwoodley/mute

https://inspirehep.net/literature/1927720
https://github.com/wjwoodley/mute


Thank you
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