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A very short introduction to pions 



𝑅𝜋 =
𝜋 → 𝑒𝜈(𝛾)

𝜋 → 𝜇𝜈(𝛾)

= (1.23534 ± 0.00015) × 10−4(±0.012%)(SM)

= (1.2327 ± 0.0023) × 10−4(±0.187%)(exp.)
x 15

Precision low energy experiment on observables that can be very 
accurately calculated in the SM: highly sensitive tests of NP.

one of the most precisely known observable involving quarks in the SM
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PDG average
SM
PIONEER goalFinal PIENU data analysis with full 

data set targeting 0.1% precision

PEN experiment at PSI aiming at 
similar precision

PDG average dominated by the 
PIENU  @ TRIUMF result 
blind analysis based on partial 
data set (~10% of full statistics)

PIONEER: closing the precision gap 



Physics case 1: Testing Lepton Flavor Universality

𝑅𝜋 =
𝜋+ → 𝑒+𝜈(𝛾)

𝜋+ → 𝜇+𝜈(𝛾)
provides the best test of universality in charged current weak interaction 

PDG value, mostly constrained by PIENU (@ TRIUMF) results : 
𝑔𝑒

𝑔𝜇
= 0.9989 ± 0.0009(±0.09%)

BUT

Several tensions in the flavour sector, potentially hinting toward LFU violation (LFUV)

• B decays O(10%) deviations from universality. 
Both heavy quarks and leptons involved! 

• Muon g-2
Deviation (4.2 σ ) from theory - new physics?

• CKM unitarity tests from β and K decays (2 - 3 σ )
Maybe related to LFUV? 

Weak interaction is the same for 𝑒/𝜇/𝜏 leptons

Charged LFU tested at 𝒪(10−3)
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Physics case 2: Sensitivity to new coupling and NP at very high mass scales
⟹ possible interpretation of universality violation

𝑅𝑆𝑀
𝜋 =

𝜋+ → 𝑒+𝜈(𝛾)

𝜋+ → 𝜇+𝜈(𝛾)
calculated at the 0.01% level

𝜋+ → 𝑒+𝜈 is helicity-suppressed (V-A) 

⇒ 𝑅𝜋 is extremely sensitive to presence of new pseudoscalar or scalar couplings

PIONEER PHASE 1 goal:
0.01 % measurement  ➙ Λ𝑒𝑃 ∼ 3000 TeV
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Physics case 2: Sensitivity to new coupling and NP at very high mass scales

• Sensitive to many other new physics scenarios
• Leptoquarks 
• Induced scalar currents 
• Excited gauge bosons 
• Compositeness 
• SU(2)xSU(2)xSU(2)xU(1) 
• Hidden sector .... 

• Many exotic searches performed by the 
PIENU collaboration :
e.g. sterile neutrinos 

which have implications for leptogenesis

recent searches 
performed by 
the PIENU
collaboration  

PIONEER will 
improve on all 
those searches 
by ~1 order of 
magnitude 

⥥
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R.E Shrock Phys.Rev.D 24, 1232 (1981), 
Phys. Lett. B 96, 159 (1980) M.Aoki et al.,  Phys. Rev. D 84, 052002 (2011)

Previous limits

New limits

90% C.L. upper limit

Factor 4 improvement 

Conventional υ

Heavy υ

Kinematic factor

If the heavy sterile neutrino mass is Mν= 60~130 MeV/c2

additional low energy positron peak can be detected in 
the π+ → e+ spectrum

Decay Positron Energy 

π+ → e+ νe

π+ → e+ νχ

Physics case 3: Sensitivity to NP at “lower” mass scales

More recent and stronger bounds provided by PIENU :
PRD 97.072012 (2018)
PLB 798 (2019) 134980  [in π → μν decay]

Comprehensive constraints on sterile neutrinos in the MeV to GeV mass range
D. A. Bryman and R. Shrock, Phys. Rev. D 100, 073011
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PIONEER expected to have an order of magnitude improved sensitivity
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Asli M. Abdullahi et al. “The Present and Future Status of Heavy Neutral Leptons”. 2022 Snowmass Summer Study. Mar. 2022. arXiv: 2203.08039 [hep-ph]

Limits on 
couplings of 
heavy neutrinos 
to electrons



Physics case 4: Testing CKM unitarity 𝑉𝑢𝑑 ,
𝑉𝑢𝑠

𝑉𝑢𝑑

super-allowed 𝛽 decays, neutron

K/π decays

𝐵(𝐾→𝜋𝑙𝜈)

𝐵(𝜋+→𝜋0𝑒+𝜈)
: Theoretically clean method to obtain 

𝑉𝑢𝑠

𝑉𝑢𝑑

PIONEER Phase II goal:
Improve 𝐵(𝜋+ → 𝜋0𝑒+𝜈) precision by >3 →

𝑉𝑢𝑠

𝑉𝑢𝑑
< ±0.2%

Offers a new complementary constraint in the 𝑉𝑢𝑠 − 𝑉𝑢𝑑 plane

PIONEER Phase III goal:
Improve 𝐵(𝜋+ → 𝜋0𝑒+𝜈) precision by an order of magnitude
𝜋+ → 𝜋0𝑒+𝜈 is the theoretically cleanest method to obtain 𝑉𝑢𝑑
PIBETA exp. (±0.6%)
𝐵(𝜋+ → 𝜋0𝑒+𝜈) = (1.038 ± 0.004𝑠𝑡𝑎𝑡 ± 0.004𝑠𝑦𝑠𝑡 ± 0.002𝜋→𝑒𝑣) × 10−8

Presently not competitive precision for 𝑉𝑢𝑑 but would be with an order of magnitude improvement (same precision as 𝛽 decays) 

tensions in the first row CKM unitarity test
3𝜎 (or even more…)
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dominant 
uncertainties : 
hadronic and 
nuclear 
corrections

D. Bryman et al. Annu. Rev. Nucl. Part. Sci. 2022. 72:69–91
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Physics case 4: Testing CKM unitarity 𝑉𝑢𝑑

Courtesy of Leendert Hayen, talk at  ELECTRO2022



PIENU 2015

PIONEER GOAL x20 improvement

PDG 2018 ±0.19%

• PIENU at TRIUMF (M13) 
• PEN at PSI (same precision goal: different setup)  
• several previous pion decay measurements

Previous 𝑅𝜋 experiments

Final goal of PIENU (using full data set)
and of PEN: 0.1% (factor ~2 over current precision)

First result from blind analysis (10% of available data analyzed)
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PIONEER goal: 0.01% uncertainty



𝑅𝜋 =
𝜋→𝑒𝜈(𝛾)

𝜋→𝜇𝜈(𝛾)
: how is it measured?

Measure precisely 𝑒+ energy spectrum and 𝑡𝑒+ − 𝑡𝜋+
⟹ different time and energy spectra - discrimination between the two decays

𝜇 → 𝑒𝜈𝜈

“Michel” spectrum
Endpoint @ 52.3 MeV

Time spectrum 𝑒+ energy spectrum 

What 𝜋 decay to “normally”: 𝐵(𝜋+ → 𝜇+𝜈(𝛾)) = 0.999877 ± 0.0000004
Helicity suppressed decay: 𝐵(𝜋+ → 𝑒+𝜈𝑒(𝛾)) = (1.2327 ± 0.00023) × 10−4

Pion 𝛽 decay: 𝐵(𝜋+ → 𝑒+𝜈𝑒𝜋
0) = (1.036 ± 0.006) × 10−8

𝜋+
𝜇+

𝑒+
μ+ e+

π+

𝑒+

π+

e+
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π+→e+νe
@ 69.3MeV



Energy spectrum

Time spectrum

START STOP

Timing Scint.

Calorimeter

Calorimeter

Calorimeter

π+

Target

Characteristics

High purity pion beam 

μ+

e+

e+

High speed pulse digitization

Good vertex reconstruction (DIF)

Tracking Detec.

Large calorimeter and excellent resolution

Low energy tail
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𝑅𝜋 =
𝜋→𝑒𝜈(𝛾)

𝜋→𝜇𝜈(𝛾)
: how is it measured?

𝜇 → 𝑒𝜈𝜈



𝑅𝜋 =
𝜋→𝑒𝜈(𝛾)

𝜋→𝜇𝜈(𝛾)
: main systematic in the PIENU experiment

𝜇 → 𝑒𝜈𝜈

Low energy tail from π+→e+νe buried under the Michel 
spectrum caused by:
• finite energy resolution of the calorimeter
• photo-nuclear interactions (127I(Ɣ,n))
• shower leakage 
• geometrical acceptance
• radiative decays
• etc

Main source of systematics : estimated using data 
(suppression of 𝜋 → 𝜇 → 𝑒 decays ) 

A. Aguilar-Arevalo et al., Nuclear Instruments and 
Methods in Physics Research A 621 (2010) 188–191 
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PIONEER: building on previous experiences - PIENU and PEN

0.8 𝜋
NaI(Tl)
19 𝑋0

3 𝜋
CsI
12 𝑋0

PIENU @ TRIUMF PEN @ PSI

NaI slow but excellent resolution (1% σ at 70 MeV)
non uniformity, small solid angle Good geometry but calorimeter depth too small
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Functioning principle of PIONEER

• Intense pion beam is stopped in active target (ATAR, 
envisioned resolution: 150μm in space and <1ns in time)

• Electromagnetic calorimeter (CALO) surrounds target.

• Cylindrical tracker used to link locations of pions stopping 
in the target to showers in the calorimeter.
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PIONEER DETECTOR CONCEPT - best of both worlds

𝜋+

𝜋+

Building on previous experiences (PIENU and PEN/PIBETA) : use of emerging technologies (LXe, LGADs) 

• 25 𝑋0, 3𝜋 sr calorimeter ➙ Reduce tail corrections (x5) ➙ Improve uniformity (x5)

Fast scintillator response (LXe) ➙ Reduce pile-up uncertainties (x5)

• active target ( “4D”) based on LGADs technology ➙ Reduce tail correction

uncertainty (x10)

Fast pulse shape  ➙ allow 𝜋 → 𝜇 → 𝑒 decay chain observation

• Fast electronics and pipeline DAQ ➙ Improve efficiency

• Intense Pion beam at PSI
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PIONEER DETECTOR CONCEPT : Calorimeter 

PIONEER

PIONEER

PIONEER

Advantages:

- uniform/homogeneous volume

- fast response

- Excellent energy resolution (goal: 1.5%@ 70MeV)

Question marks

- energy resolution at 70 MeV 

- handling pileup 

- cost

- photonuclear events (need data to benchmark simulations)

- choice & performance of photosensors

0.9 m

• 25 𝑋0, 3𝜋 sr calorimeter ➙ High energy resolution, fast, symmetric ➙ Much better tail suppression

(PIENU: 3% → PIONEER 0.5%)
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MEG large prototype: ~100 l LXe at PSI

Inform PIONEER on the technology choice for the calorimeter

Axial length of the prototype is up to 25 X0 = baseline radius for the PIONEER LXe “ball”

Objectives

Using a high momentum resolution 70 MeV e+ beam  et PSI:

- Measure energy resolution / benchmark simulations

- Measure detector lineshape

- Study shower leakages

- Measure contribution of photonuclear reactions

- Test of entrance window

- Technological upgrades test (cabling, choice of material for PMT PCBs, purity monitor)

- Training of the collaboration on cryogenic liquid handling

- R&D : effect of optical coating on energy resolution, optical segmentation

test of new generation photosensors

PIONEER DETECTOR CONCEPT : Prototyping needed 

2L LXe cryostat at McGill : LoLX 
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LoLX Experiment
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See talk in M1-1 by Stephanie Bron

In future upgrade to LoLX: investigate effect of purity on light emission.



See Lucas Darroch’s talk “The stability of HPK 
VUV4 SiPMs following a large dose of VUV 
radiation.” in W2-6 tomorrow.

Possible SiPM degradation?
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Synergetic development between PIONEER and nEXO
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PIONEER Schedule

Phase I
Approved by PSI
Low momentum pion beam at 55 MeV/c (±2% Δp/p) @ 300 kHz
2x108 π+→e+νe required to achieve 0.01% precision of Re/μ

Expected in 3 years (5 month running/year)

Future:
Phase II
7x105 π+→ π0e+νe required to achieve 3-fold improvement on BR

Phase III
7x106 π+→ π0e+νe required to achieve 10-fold improvement on BR



• PIONEER is a major new experiment addressing emerging SM anomalies in flavor physics

• Staged goals

• 𝑅𝜋 at 0.01% matching theoretical precision 

• Pion 𝛽 decay at 0.03% (in two steps) matching super-allowed 𝛽 decay experiments

• Precision experiment: Sensitive to very high energy scales. 

• Unique new information on Lepton Flavor Universality and CKM unitary with unprecedented precision 

• Pion decay: long history of establishing and challenging the SM

• 2-body spectra very sensitive to a wide range of exotics

• PIONEER is employing state-of-the-art technology (LGADs, Noble liquid calorimetry)

• Time-scale: 10-15 years

• Approved to run at PSI. Expected start of data taking ~ 5 years timescale (first beamtime for beam characterization happened last year)

• Supported by a large, experienced international collaboration: experts from previous PIENU and PEN experiments as well as a wide range 
of international collaborators from NA62, MEG, muon g-2, ATLAS, PSI scientists and leading theorists: JOIN US!

Conclusions and opportunities!

Snowmass PIONEER white paper: https://arxiv.org/abs/2203.05505
PIONEER PSI proposal: https://arxiv.org/pdf/2203.01981.pdf
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https://arxiv.org/abs/2203.05505
https://arxiv.org/pdf/2203.01981.pdf


BACKUP SLIDES
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PIENU 2015 and PIONEER precision
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PSI Pion Beam Requirements
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PIONEER DETECTOR CONCEPT : Active Target (ATAR) 

Developments led by UCSC 

• active target ( “4D”) based on LGADs(Low gain avalanche diode)

technology

Requirements 

• High longitudinal segmentation: to detect the decay in flight of pions and muons

• Compact: less dead material (including air) as possible in between planes and around ATAR 

• Fast collection time: separate pulses that are close in time to reconstruct the pion decay chain (<1.5 ns pulse pair 

resolution is needed)

• Large Dynamic range: detect energy deposit from positrons (MiP) and slow pions/muons (non-MiP)

Tentative initial design 

• 48 layers of 120um thick silicon sensors ( total of 6 mm in beam direction)

• 100 strips, 2 cm length, with 200 um pitch (2x2 cm area) 

• Compromise between granularity, total active area, timing and dead material 

• Sensors are packed in stack of 2 with facing HV side and rotated by 90°
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π+

CsI crystal

Acceptance

Wire Chamber

Beam Wire Chamber

Silicon Trackers

PIENU IPIENU II

Monolithic NaI(Tl) crystal 

surrounded by 97 pure CsI 

crystals
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