Why statistical physics is the best course you take: Introduction to quantum information with entanglement renormalization

Thomas E. Baker
Canada Research Chair in Quantum Computing for Modelling of Molecules and Materials
Department of Physics \& Astronomy
Department of Chemistry
Centre for Advanced Materials and Related Technology
University of Victoria

Outline

Thermodynamics

- What is...?

- Entropy
- Density matrices
- Renormalization group

Phase transitions and Information theory

- Renormalization
- Entropy
- Entanglement

Quantum information

- Entanglement renormalization
- Entanglement renormalisation

DMRjulia

Introduction paper

Research Press

TUTORIAL

Méthodes de calcul avec réseaux de tenseurs en physique

Thomas E. Baker, Samuel Desrosiers, Maxime Tremblay et Martin P. Thompson

Résumé : Cet article se veut un survol des réseaux de tenseurs et s'adresse aux débutants en la matière. Nous y mettons l'accent sur les outils nécessaires à l'implémentation concrète d'algorithmes. Quatre opérations de base (remodelage, permutation d'indices, contraction et décomposition) qui sont couramment utilisées dans les algorithmes de réseaux de tenseurs y sont décrites. Y seront aussi couverts la notation diagrammatique, intrication, les états en produit de matrices (MPS), les opérateurs en produit de matrices (MPO), état projeté de paires intriquées (PEPS), l'approche par renormalisation d'enchevêtrement multi-échelle (MERA), la décimation par bloc d'évolution temporelle (TEBD) et le groupe de renormalisation de tenseurs (TRG).
Mots-clés : réseaux de tenseurs, décomposition en valeurs singulières, intrication.
Abstract : This article is an overview of tensor networks and is intended for beginners in this field. We focus on the tools required for the concrete implementation of algorithms. Four basic operations (remodelling, permutation of indices, contraction, and decomposition) commonly used in tensor network algorithms are described. This study also covers diagrammatic notation, entanglement, matrix product states (MPS), matrix product operators (MPO), projected entangled pair state (PEPS), multi-scale entanglement renormalization ansatz (MERA), time evolving block decimation (TEBD), and tensor renormalization group (TRG).
Keywords: tensor networks, singular value decomposition, entanglement.

1. Introduction

Les méthodes exactes de résolution de systèmes quantiques

Dans cette revue des réseaux de tenseurs, nous nous concentrons sur les opérations de base nécessaires à la manipulation des tenseurs. À la section 2, nous commençons par une discussion de

Thermodynamics

Energy equivalence

- Is energy different depending on how it is used?

APSNews December 18, 11 (2009)

- Energy is energy (First Law of Thermodynamics):

$$
\Delta U=Q+W
$$

Thermodynamics

Ideal engine efficiency:
P

CHAIRES DE RECHERCHE DU CANADA

Thermodynamics

Legendre transformation (Maxwell relations): $d U=T d S-p d V$

CHAIRES DE RECHERCHE DU CANADA

Thermodynamics

What is S ?

- "En" like energy
- Verwandlungsinhalt - German for transformation-content
- en + "transform" = entropy

$$
d S=\left(\frac{d Q}{T}\right)_{V}
$$

- But what is it? Admittedly... $\Delta S \geq 0$

Thermodynamics

Other form

- Boltzmann entropy

$$
S=k_{B} \ln \Omega
$$

- Density matrices

$$
\begin{gathered}
\langle O\rangle=\operatorname{Tr}(\rho O) \\
S=-k_{b} \sum \rho_{i} \ln \rho_{i}
\end{gathered}
$$

- Reduces when all probabilities are equal

Part 2a. Phase transitions

$$
\begin{aligned}
& \text { Côherence }{ }_{\star}^{\star} \text { Lengths } \star \\
& \star \\
& \star
\end{aligned}
$$

Coherence lengths

Mandelbrot noted:

- Measure the coastline
- Satellite vs. Ant
- Different answers but both valid
- Depends on what measurement was used

Kadanoff: Spin Blocking

Kadanoff: Spin Blocking

Kadanoff: Spin Blocking

- Less terms
- Better near a critical point
- Same energy
- Different J

$$
H=-J \sum_{i, j} S_{i}^{z} \cdot S_{j}^{z}
$$

CANADA RESEARCH CHAIRS
CHAIRES DE RECHERCHE DU CANADA

Keep the most relevant degrees of freedom

Low pass filter

Wilson: renormalization group

- Quantum field theory
- Condensed matter too:

$$
\frac{V}{2 \pi^{2} c_{s}^{3}} \int_{0}^{\omega_{D}} \omega^{2} d \omega=N
$$

- Debye frequency
- Cutoff to regularize integrals
- In condensed matter: lattice cutoff
- Also made the numerical renormalization group (NRG)

> HOLOGRAPHIC DUALITY IN CONDENSED MATTER PHYSICS

JAN ZAANEN, YA-WEN SUN, YAN LIU AND KOENRAAD SCHALM

Part 3. Classical algorithms for quantum problems

CANADA RESEARCH CHAIRS CHAIRES DE RECHERCHE DU CANADA

Algorithms to solve problems: Exact Diagonalization

- Large Hamiltonian operators
- Scales as d^{N}
- d local Fock space size
- N sites

$$
\sigma_{i}^{z}=I \otimes I \otimes \sigma^{z} \otimes I \otimes \ldots \otimes I
$$

- Realistically $5-20$
- Record as of 2018: 50 sites
A. Wietek and A.M. Laüchli. Phys. Rev. E, 98, 033309 (2018)
- Too expensive for large systems!
- Especially fermions

Renormalize what?

- Decompose wavefunction?
¢
- But how?

2-site Spin-1/2 State

$$
=\left|\uparrow_{1} \sqrt{2}\right\rangle=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)
$$

How to split left and right?

- Right way: grouping basis functions on the left and on the right

CANADA RESEARCH CHAIRS
CHAIRES DE RECHERCHE DU CANADA

Reshaping: 4-sites

$2 \times$ (rest of lattice)

Reshaping: 4-sites

4×4
CANADA RESEARCH CHAIRS
CHAIRES DE RECHERCHE DU CANADA

Reshaping: 4-sites

(rest of lattice) $\times 2$

Part 2b.

Information theory

Information Theory

How many questions do I have to ask?

Density matrix elements!

- Monotonically increasing function
- Adds like a logarithm
- Grouping Axiom
- Continuous

Shannon entropy
(After quantization: von Neumann entropy or entanglement entropy)

The Density Matrix

- Density matrix of a subsystem

CANADA NEEEdGU qind

$$
\psi=U D V^{\dagger}
$$

Easy to Read Diagrams

Matrix Product State: 6-sites

- Reshape (2×32)

$$
\psi=\frac{1}{8}\left(\begin{array}{llll}
1 & 0 & 1 & \ldots \\
1 & 0 & 0 & \ldots
\end{array}\right)
$$

- Singular Value Decomposition

$$
\psi=U D V=\left(\begin{array}{cc}
-0.92388 & -0.382683 \\
-0.382683 & 0.92388
\end{array}\right)\left(\begin{array}{cc}
0.23097 & 0 \\
0 & 0.0956709
\end{array}\right)\left(\begin{array}{ccc}
-0.707107 & 0 & -0.5
\end{array} \ldots\right.
$$

Matrix Product State:

 6-sites- Reshape ($2 \times 2 \times 16$)

- Singular Value Decomposition

Matrix Product State:

 6-sites- Reshape

Matrix Product State:

 6-sites- Reshape

CANADA RESEARCH CHAIRS
CHAIRES DE RECHERCHE DU CANADA

Matrix Product State:

 6-sites- Reshape

CANADA RESEARCH CHAIRS
CHAIRES DE RECHERCHE DU CANADA

Matrix Product State: 6-sites

- Reshape

Truncation

- Density matrix of a subsyste
- Truncation of small weights
- Quantum Chemistry: weights of the

$$
\left.\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & 0 \\
\text { Qeots } & 0 \\
0 & 0 \text { 0.er }
\end{array}\right)
$$ natural orbitals from the 1-particle reduced density matrix

$$
\begin{aligned}
& \hat{\rho}=\psi \psi^{\dagger}=\left(\begin{array}{ccc}
0.98 & 0 & 0 \\
0 & 0.01 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
E=\operatorname{Tr}(\rho \mathcal{H})
\end{array}\right. \\
& E=\text { che } \\
& \text { cle }
\end{aligned}
$$

- Control size of wavefunctions
- Truncation error

Density matrix renormalization group

$$
\begin{aligned}
& \text { (4) 中 } \\
& \frac{\partial^{2}}{\partial A_{a_{i-1}}^{* \sigma_{i}} a_{i} A A_{a_{i} a_{u+1}}^{* \sigma_{i+1}}}(\langle\Psi| \mathcal{H}|\Psi\rangle-E\langle\Psi \mid \Psi\rangle)=0
\end{aligned}
$$

Density matrix renormalization group

2.

$$
\begin{aligned}
& \left|\psi_{n+1}\right\rangle=\mathcal{H}\left|\psi_{n}\right\rangle-\alpha_{n}\left|\psi_{n}\right\rangle-\beta_{n}\left|\psi_{n-1}\right\rangle \\
& \alpha_{n}=\left\langle\psi_{n}\right| \mathcal{H}\left|\psi_{n}\right\rangle \quad \text { and } \quad \beta_{n}^{2}=\left\langle\psi_{n-1} \mid \psi_{n-1}\right\rangle
\end{aligned}
$$

3.

4.

Density matrix renormalization group

When does DMRG work well?

- Area law

Hilbert space

- Kohn's principle of nearsightedness

$\begin{cases}\exp (-x / \xi) & \text { gapped } \\ 1 / x^{\gamma} & \text { gapless }\end{cases}$
T.E. Baker, et. al., Can. J. Phys. 99, 4 (2021)
ibid, arxiv: 1911.11566

Conclusion

- Entanglement renormalization
- Use of entanglement
- Custom library
- Well documented
- Near the v1.0 release
- New algorithms
- Highly efficient

Build your own tensor network library:

DMRjulia I. Basic library for the density matrix renormalization group
Thomas E. Baker ${ }^{1,2}$ and Martin P. Thompson ${ }^{2}$
${ }^{1}$ Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom ${ }^{2}$ Institut quantique Є̛ Département de physique, Université de Sherbrooke, Sherbrooke, Québec J1K $2 R 1$ Canada (Dated: September 8, 2021)

An introduction to the density matrix renormalization group is contained here, including coding examples. The focus of this code is on basic operations involved in tensor network computations, nd this forms the foundation of the DMRjulia library. Algorithmic complexity, measurements from the matrix product state, convergence to the ground state, and other relevant features are also
discussed. The present document covers the implementation of operations for dense tensors into the Julia language. The code can be used as an educational tool to understand how tensor network computations are done in the context of entanglement renormalization or as a template for other codes in low level languages. A comprehensive Supplemental Material is meant to be a "Numerical Recipes" style introduction to the core functions and a simple implementation of them. The code is fast enough to be used in research and can be used to make new algorithms.
CONTENTS

CONTENTS
II. Why is it the called the density matrix

NRC
earch Pr

TUTORI

Méthodes de calcul avec réseaux de tenseurs en physique

Thomas E. Baker, Samuel Desrosiers, Maxime Tremblay et Martin P. Thompson

Résumé : Cet article se veut un survol des réseaux de tenseurs et s'adresse aux débutants en la matière. Nous y metton cent sur les outils nécessaires à rimplementation concrete d algorithmes. Quatre operations de base (remodelage, per tion d'indices, contraction et décomposition) qui sont couramment utilisées dans les algorithmes de réseaux de tense sont décrites. Y seront aussi couverts la notation diagrammatique, intrication, les états en produit de matrices les opérateurs en produit de matrices (MPO), état projeté de paires intriquées (PEPS), l'approche par renormalis d'enchevêtrement multi-échelle (MERA), la décimation par bloc d'évolution temporelle (TEBD) et le groupe de reno sation de tenseurs (TRG).
Mots-clés : réseaux de tenseurs, décomposition en valeurs singulières, intrication.
Abstract : This article is an overview of tensor networks and is intended for beginners in this field. We focus on the required for the concrete implementation of algorithms. Four basic operations (remodelling, permutation of indices traction, and decomposition) commonly used in tensor network algorithms are described. This study also covers dia matic notation, entanglement, matrix product states (MPS), matrix product operators (MPO), projected entangled pair (PEPS), multi-scale entanglement renormalization ansatz (MERA), time evolving block decimation (TEBD), and renormalization group (TRG)
Keywords: tensor networks, singular value decomposition, entanglement.

1. Introduction

Les méthodes exactes de résolution de systèmes quantiques sont difficiles à appliquer aux problèmes de grande taille. Il est alors nécessaire d'utiliser des méthodes approximatives et les rés ̀̀ de ter for lisées à cet effet. Les méthodes des réseaux de tenseurs se basent

Dans cette revue des réseaux de tenseurs, nous nous co ons sur les opérations de base nécessaires a la manipulatio enseurs. A la section 2, nous commençons par une discussi que sont les tenseurs. A la section 3, nous introduisons otation schématique qui permet de simplifier le traitemen ytique des réseaux de tenseurs. À la section 4, nous prése quatre opérations de base s'appliquant aux tenseurs. Da

